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ABSTRACT
In this paper, we consider the problem of power constrained
partially coherent distributed detection over fading multi-
access channel. The deflection coefficient maximization
(DCM) is used to optimize the performance of detectors.
Two cases of the channel gain information are considered
separately at the fusion center, one case with perfect channel
gain (the corresponding method is referred to as PC-DCM,
with PC being the abbreviation for “partially coherent”), the
other case with statistical information of channel gain (the
corresponding method is referred to as PC-DCM-CS, with
CS being the abbreviation for “channel statistics”). We derive
the closed-form solutions to the considered problems. Monte-
Carlo simulations are carried out to verify the performance of
the proposed methods. Simulation results show that the pro-
posed new methods could significantly improve the detection
performance of the fusion system at low signal-to-noise ratio
(SNR).

Index Terms— Distributed detection, partially coherent,
deflection coefficient maximization, power constraint, multi-
access channel

1. INTRODUCTION

With the significant development in the fields of intelli-
gent sensors, wireless communications and networking,
distributed detection using multiple sensors has become a
fast-growing research area [1]-[3]. Compared to a centralized
scheme where all raw observation data is communicated to
the fusion center, distributed detection scheme could dra-
matically reduce the communication bandwidth and thus is
very competitive candidate to be implemented in wireless
sensor networks [4]-[7]. However, to implement distributed
detection in networking, we meet some new challenges. One
challenge is the stringent power constraint. Normally, lo-
cal sensors are powered by small batteries and it is difficult
or not economic to replace those batteries when they run
out. Therefore, power management is considered to be an
important issue in distributed detection.
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Numerous researchers have focused on the usual parallel
topology which assumes that each sensor transmits through a
parallel access channel (PAC). For this scheme, a dedicated
channel will be established for each sensor that wishes to
communicate with the fusion center [4], [5]. Recently, dis-
tributed detection over multiple access channels (MAC) has
received much attention, it has been verified that in some
cases the MAC scheme could offer high efficiency in band-
width usage and achieve a significant improvement in perfor-
mance compared to the PAC scheme when a large number of
sensors are deployed [8], [9], [13]. The problem of distributed
detection under power constraints has been studied by many
researchers [10]-[12]. Using the PAC, in [10], it was shown
that the performance is asymptotically optimal for binary de-
centralized detection using identical sensor nodes under joint
power constraint. Using the MAC, in [11], the optimal quan-
tization function has been studied under the total power con-
straint which assumed the sensors are homogeneous. In [12],
it was showed that under the total power constraint, MAC
fusion results in exponential decay in error exponents with
the number of sensors, while PAC fusion does not. However,
most of the above authors assumed perfectly phase coherent
reception at the fusion center. In practice, this assumption
will be too strong. In this paper, we relax the assumption
of perfectly coherent reception and study the problem of to-
tal power constrained partially coherent detection over fading
Multi-access Channel.

2. SYSTEM MODEL

The model of the distributed detection system considered here
is illustrated in Fig. 1, where the system consists of N sensors
and a fusion center (FC). Here, H0 denotes the null hypothe-
sis (e.g., the target is absent), and H1 denotes the alternative
hypothesis (e.g., the target is present). The prior probabilities
for both hypothesis (denoted by P0 and P1, respectively) are
assumed known. Assume yi be the observation obtained by
the i-th sensor. Each sensor performs binary detection and
generates a local decision based on its own measurement. We
do not assume any determined distribution for observations
but do assume the observations are all conditionally indepen-
dent on any hypothesis. The same as literature [5], in this
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paper, we assume flat fading channels between local sensors
and the FC. We adopt the ON-OFF keying (OOK) mode, i.e.,
ui = 1 if the i-th sensor is in favor of H1, and ui = 0 oth-
erwise. Here i = 1, 2, . . . , N. We characterize the detection
performance of the i-th sensor node by its false alarm proba-
bility Pfi and detection probability Pdi, which are defined as
Pfi = p(ui = 1|H0) and Pdi = p(ui = 1|H1), respectively.

The local decisions are modulated firstly, and then trans-
mitted over fading and noisy channels to the fusion center.
The MAC scheme allows all the sensors to transmit simulta-
neously over the same channel [6], the fusion center observes
a superposition of the signals sent by the local sensors, the
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Fig. 1. System model.

signal S received by the fusion center can be expressed as

S =
N∑
i=1

√
giuihie

jφi + ñ, (1)

where
√
gi (1 ≤ i ≤ N) is the nonnegative weight coefficient

which will modulate the i-th transmitted waveform (usually,
it is a baseband signal). hi (1 ≤ i ≤ N ) denotes the fad-
ing channel gain between the i-th local sensor and the FC.
φi ∈ [−π, π] is the channel phase, and we assume that φi is
uniform distribution. ñ is zero mean complex Gaussian noise
with variance 2σ2, that is ñ ∼ CN(0, 2σ2). Usually, we as-
sume phase coherent reception at the fusion center; this could
be either accomplished through limited training for stationary
channels, or, at a small cost of SNR degradation, by employ-
ing differential encoding for fast fading channels. However,
we account for the fact that the phase synchronization is never
perfect at the fusion center. Let φ̂i be the estimation of the i-
th channel phase, then we assume the corresponding sensor
could use φ̂i to correct the channel phase before transmis-
sion (i.e., the i-th transmitted waveform will be multiplied by
e−jφ̂i). Thus the information received by the fusion center
can be described as

Ŝ =
N∑
i=1

√
giuihie

jφ̃i + ñ, (2)

here φ̃i = φi − φ̂i is the residual phase error after correction.
In practice, the phase-locked loop is usually used to estimate
the channel phase [14], [15]. The probability density func-
tion (PDF) of the phase error can be suitably modeled by the
Tikhonov distribution [16], [17]. Therefore, we have the PDF
of the channel phase error as follows

fφ̃(x) =
eβ cos(x)

2πI0(β)
, − π < x < π, (3)

where In(x) is the modified Bessel function of the first kind
of order n, and β ≥ 0 is the shape parameter, we note that
the larger the value of β is, the smaller of the channel phase
error will be, i.e. while β → ∞ corresponds to the perfect
phase information. From (2), we observe that Ŝ is a complex
variable, thus we use the real part function R(·) to get R(Ŝ)
(for convenience, let Y = R(Ŝ)) as follows

Y = R(Ŝ) =

N∑
i=1

√
giuihi cos(φ̃i) + n. (4)

Where n is zero mean Gaussian noise with variance σ2, that
is n ∼ N(0, σ2). The global decision is made by involving a
comparison of Y with a threshold [5].

3. DISTRIBUTED DETECTION VIA DEFLECTION
COEFFICIENT MAXIMIZATION

The deflection coefficient could reflect the output-signal-to-
noise-ratio and has been widely used in optimizing detectors
[23]. The larger the deflection coefficient is, the better the
performance of the system will be. It is worth noting that the
use of deflection criterion leads to the optimum likelihood ra-
tio (LR) receiver in many cases of practical applications [24].
We therefore are motivated to optimize the performance of
fusion system via maximizing the deflection coefficient. The
deflection coefficient is defined as

D(Y ) =
[E(Y |H1)− E(Y |H0)]

2

Var(Y |H0)
, (5)

where E(·|Hj) and Var(·|Hj) (j = 0, 1) denote the expected
value and variance under condition Hj , respectively.

4. DISTRIBUTED DETECTION UNDER TOTAL
POWER CONSTRAINT

The total power constrained optimization problem can be for-
mulated as

max D(Y )

s.t.
N∑
i=1

E{|√giuie
−jφ̂i |2} ≤ P,

gi ≥ 0, 1 ≤ i ≤ N, (6)
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here, P is the total power budget. Our aim is to derive the
optimal values of gi.

4.1. PC-DCM method

Assume hi, ui and φ̃i are independent, then, using (4), we
have

E(Y |Hj) =
N∑
i=1

√
gihiE(ui|Hj)E(cos(φ̃i)), (7)

E(ui|Hj) =

{
Pdi, if j = 1,

Pfi, if j = 0,
(8)

from (3), we have

E(cos(φ̃i)) =

∫ π

−π

cos(x)
eβ cos(x)

2πI0(β)
dx =

I1(β)

I0(β)
, (9)

Var(Y |H0) =
N∑
i=1

gih
2
iVar(ui cos(φ̃i)|H0) + σ2, (10)

Var(ui cos(φ̃i)|H0) =

1
β I1(β) + I2(β)

I0(β)
Pfi − [

I1(β)

I0(β)
]2P 2

fi,

(11)

where the last equality in (9) and (11) follows by property of
the Bessel function [25]. Thus, D(Y ) can be obtained using
(7)∼(11), the optimization problem (6) becomes

max

[∑N
i=1

√
gihi

I1(β)
I0(β)

(Pdi − Pfi)
]2

∑N
i=1 gih

2
i {

1
β I1(β)+I2(β)

I0(β)
Pfi − [ I1(β)I0(β)

]2P 2
fi}+ σ2

s.t.
N∑
i=1

E{|√giuie
−jφ̂i |2} =

N∑
i=1

gi(P0Pfi + P1Pdi) ≤ P,

gi ≥ 0, 1 ≤ i ≤ N. (12)

Denote the vector a = (a1, a2, . . . , ai, . . . , aN )T with
ai =

√
P (hi/ci)[I1(β)/I0(β)](Pdi − Pfi), the diago-

nal matrix B = diag(b1, b2, . . . , bi, . . . , bN ) with bi =
P (h2

i /c
2
i ){[(1/β)I1(β) + I2(β)/I0(β)]Pfi−[I1(β)/I0(β)]

2P 2
fi},

and the vector ω = (ω1, ω2, . . . , ωi, . . . , ωN )T with ωi =
ci
√
gi/

√
P , where ci =

√
P0Pfi + P1Pdi. With the above

notations, problem (12) can be equivalently rewritten as

max
ωTaaTω

ωTBω + σ2

s.t. ∥ω∥22 ≤ 1, ω ≥ 0. (13)

We assume ωo is the optimal solution to (13), then we claim
∥ω0∥22 = 1. The proof is as follows, suppose ∥ω0∥22 < 1, let
ω̂0 = ω0/∥ω0∥, then ∥ω̂0∥22 = 1, we know

ω̂T
0 aa

T ω̂0

ω̂T
0 Bω̂0 + σ2

=
ωT

0 aa
Tω0

ωT
0 Bω0 + ∥ω0∥22σ2

>
ωT

0 aa
Tω0

ωT
0 Bω0 + σ2

,

(14)

which is a contradiction. Therefore (13) can be equivalently
converted into

max
ωTaaTω

ωT (B + σ2I)ω

s.t. ∥ω∥22 = 1, ω ≥ 0. (15)

Let x = Aω with A = (B + σ2I)
1
2 , we notice that A is a

diagonal and also positive definite matrix, then ω = A−1x =
(B + σ2I)−

1
2x, (15) becomes

max
xTA−1aaTA−1x

xTx

s.t. ∥A−1x∥22 = 1, x ≥ 0. (16)

(16) is an eigenvalue problem, since Rank(A−1aaTA−1) =
1, thus, the optimal solution to (16) is the eigenvector of the
matrix A−1aaTA−1 corresponding to the maximum eigen-
value. Therefore, the optimal solution to problem (12) is

gi =
P (ωo)

2
i

P0Pfi + P1Pdi
, (17)

where (ωo)i denotes the i-th component of the vector ωo,
ωo = ωa/∥ωa∥, ωa = (B + σ2I)−1a.

4.2. PC-DCM-CS method

In this case, only the statistical information of channel gain is
known to the FC, thus, we have

E(Y |Hj) =
N∑
i=1

√
giE(ui|Hj)E(hi)E(cos(φ̃i)), (18)

Var(Y |H0) =
N∑
i=1

giVar(uihi cos(φ̃i)|H0) + σ2. (19)

Notice that Var(uihi cos(φ̃i)|H0) is the variance of the prod-
uct of three independent random variables, from [26], we have

Var(uihi cos(φ̃i)|H0) =
3∏

k=1

(Vk +X2
k)−

3∏
k=1

(X2
k), (20)

here Vk (k = 1, 2, 3) is the conditional variance of ui, hi

and cos(φ̃i), Xk (k = 1, 2, 3) is the conditional expec-
tation of ui, hi and cos(φ̃i) under H0, respectively. We
have V1 = Pfi − P 2

fi, V2 = E(h2
i ) − E2(hi), V3 =

[(1/β)I1(β) + I2(β)]/I0(β) − [I1(β)/I0(β)]
2, X1 = Pfi,

X2 = E(hi), X3 = I1(β)/I0(β), where we get V3 using the
property of the Bessel function [26]. Then

Var(uihi cos(φ̃i)|H0) = PfiE(h
2
i )[(1/β)I1(β) + I2(β)]/I0(β)

− P 2
fiE

2(hi)[I1(β)/I0(β)]
2. (21)
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Thus, the optimization problem (6) becomes

max

[∑N
i=1

√
giE(hi)

I1(β)
I0(β)

(Pdi − Pfi)
]2

∑N
i=1 giVar(uihi cos(φ̃i)|H0) + σ2

s.t.
N∑
i=1

E{|√giuie
−jφ̂i |2} =

N∑
i=1

gi(P0Pfi + P1Pdi) ≤ P,

gi ≥ 0, 1 ≤ i ≤ N. (22)

Denote the vector γ = (γ1, γ2, . . . , γi, . . . , γN )T with
γi =

√
P [E(hi)/ci][I1(β)/I0(β)](Pdi − Pfi), the diag-

onal matrix M = diag(m1,m2, . . . ,mi, . . . ,mN ) with
mi = PVar(uihi cos(φ̃i)|H0)/c

2
i . Following the similar

derivation process outlined in 4.1, the optimal solution to
problem (22) is

gi =
P (ϖo)

2
i

P0Pfi + P1Pdi
, (23)

where (ϖo)i denotes the i-th component of the vector ϖo,
ϖo = ϖa/∥ϖa∥, ϖa = (M + σ2I)−1γ.

5. NUMERICAL SIMULATION

In our simulation, we assume a Rayleigh fading chan-
nel, i.e., the pdf of hi is f(hi) = 2hie

−h2
i , hi ≥ 0.

E(hi) =
√
π/2, E(h2

i ) = 1. We set N = 8, P⃗d =

{0.5, 0.3, 0.4, 0.35, 0.5, 0.45, 0.6, 0.7}, where P⃗d = [Pd1, Pd2,
. . . , PdN ], Pfi = 0.05, i = 1, 2,. . . , N . P = 8, P0 = 0.3,
β = {1, 100, 600,∞}. The signal to noise ratio is defined
as SNR=10 log10(1/σ

2) dB. Each curve is obtained by 104

Monte Carlo runs.
Figs. 2 and 3 plot the system detection probability (PD)

versus SNR of PC-DCM and PC-DCM-CS under given sys-
tem false alarm probability (PF), respectively. To compare
with the existing methods, the performance of likelihood ratio
test (LRT) approach which has the best performance among
all the rules under the traditional parallel access scheme [5] is
also examined. For different values of β, Fig. 4 shows the Re-
ceiving Operation Characteristics (ROC) curves of PC-DCM,
PC-DCM-CS and LRT.

From the simulation results, we note that under the total
power constraint, both PC-DCM and PC-DCM-CS methods
can effectively improve the detection performance of the fu-
sion system. From Fig. 2∼ Fig. 4, we observe that the detec-
tion performance of PC-DCM and PC-DCM-CS are superior
to LRT’s. We also observe that the larger the value of β is,
the better the performance of the system will be. From Fig. 4,
we also note that the performance of PC-DCM is superior to
PC-DCM-CS. Obviously, that is because the PC-DCM takes
into account the perfect channel gain information, however,
the PC-DCM-CS requires only the statistical knowledge of
channel gain.

6. CONCLUSION

In this paper, the problem of power constrained partially co-
herent distributed detection over fading multi-access channel
has been studied. Under the total power constraint, the crite-
rion of deflection coefficient maximization has been used to
optimize the performance of the fusion system. For partially
coherent reception case, the Numerical simulation shows that
the proposed PC-DCM and PC-DCM-CS methods can effec-
tively improve the performance of the fusion system.
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