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ABSTRACT

Opportunistic spectrum access in a cognitive radio network

has been a challenge due to the dynamic nature of spectrum

availability and possible collisions between the primary user

(PU) and the secondary user (SU). To maximize the spectrum

utilization, we propose a spectrum access strategy where SU’s

packets are interleaved with periodic sensing to detect PU’s

return. We formulate the sensing/probing/access process as a

maximum rate-of-return problem in the optimal stopping the-

ory framework and show that the optimal channel access strat-

egy is a pure threshold policy. We consider a realistic channel

and system model by taking into account channel fading and

sensing errors. We jointly optimize the rate threshold and the

packet transmission time to maximize the average throughput

of SU, while limiting interference to PU.

1. INTRODUCTION

Cognitive radio appears as one very viable technology that

can optimize the use of available radio frequency spec-

trum [1]. In this paper, we propose an optimal spectrum

access strategy involving transmission interleaved with peri-

odic sensing that leverages sensing, channel-aware schedul-

ing and optimization of transmission time in a joint manner

to maximize SU’s throughput. One of the key observations

on cognitive radio is that the successful transmission of SU

depends on PUs’ activities. The return of PU would cause the

transmission of SU to fail. However, while SU is transmitting,

it has no knowledge of the return of PU. We therefore pro-

pose periodic sensing while transmission to track PU. First,

channel sensing is carried out to explore a spectrum hole for

SU’s transmission. Second, while a channel is used by SU,

periodic sensing is deployed to detect the return of PU. The

benefit of periodic sensing is that when PU returns, only the

data transmitted since the last successful sensing may be lost

– prior transmitted packets are not affected.

In transmission with periodic sensing, there exists a trade-

off between data lost due to PU’s return while using long

packets, and the time cost of frequent sensing using short
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packets. If the transmission time is long, i.e., the frequency

of periodic sensing is low, the time cost of tracking the return

of PU is small but the amount of lost data when PU returns

is large. On the contrary, if the transmission time is small

and the frequency of periodic sensing is high, the amount of

lost data when PU returns is small but at the expense of high

cost of tracking PU. Motivated by this, we optimize the trans-

mission time of SU between consecutive sensing phases to

maximize the network throughput, which is equivalent to op-

timizing the frequency of periodic sensing.

We consider a system consisting of multiple channels. We

characterize the joint sensing, probing and channel access

with optimal transmission duration in a stochastic decision-

making framework and formulate the decision problem as an

optimal stopping problem [2]. When the sensing indicates

that a channel is idle, probing is carried out to estimate the

channel quality and the highest data rate it can support. Based

on this estimate, one can decide either to proceed with trans-

mission on this channel or to give up the opportunity and con-

tinue sensing for a potentially better channel. We show that

the optimal channel access strategy exhibits a threshold struc-

ture, i.e., the channel access decision can be made by compar-

ing the rate to a threshold. Furthermore, we jointly optimize

the threshold and the transmission time between consecutive

sensing phases to maximize the average throughput.

1.1. Related Works

Channel knowledge can be used as one criterion for channel

selection to improve spectrum efficiency in wireless networks

[2–5]. Zheng et al. [2] use optimal stopping theory to de-

velop distributed opportunistic scheduling (DOS) for exploit-

ing multiuser diversity and time diversity in a single channel

model for wireless ad hoc networks. Chang et al. [3] address

the optimal channel selection problem in a multichannel sys-

tem by considering the channel conditions. In our work, be-

sides gaining the benefits of channel knowledge, we consider

cognitive radio networks with incumbent PUs and also opti-

mize the transmission time of SU to maximize throughput.

Shu et al. [4] show that joint sensing/probing scheme for

cognitive radio can achieve significant throughput gains over
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conventional mechanisms that use sensing alone. Our chan-

nel access scheme is an extension of optimal stopping results

in [2], [4] and is more complex due to the variable transmis-

sion times, probing of the channels only when they are sensed

to be idle and consideration of sensing errors. Additionally,

we consider periodic sensing while transmission and further

optimize the transmission time, i.e. the frequency of sensing.

There are few works in the literature that explicitly opti-

mize the transmission time or perform periodic sensing while

transmission [6], [7], [5]. Pei et al. [6] optimize the frame

duration to maximize the throughput of the cognitive radio.

In contrast, our work considers multichannel system and also

takes channel quality into consideration.

Apart from the optimal stopping theory approach to the

channel access problem, another popular approach in the lit-

erature is based on the Partially Observable Markov Deci-

sion Process (POMDP) framework [8–10]. POMDP-based

schemes attempt to dynamically track the idle state of various

channels and maximize throughput by exploiting the spec-

trum opportunities. Our scheme explores channels uniformly

at random and doesn’t dynamically track the idle channels.

But it fully utilizes the idle state of the channels it accesses.

As we show in the numerical results, our scheme that takes

channel quality into consideration, performs periodic sensing

while transmission and jointly optimizes the packet duration

and the channel quality threshold, outperforms the POMDP

scheme in [8].

2. CHANNEL AND SYSTEM MODEL

We consider a frequency-selective multi-channel system. We

assume each channel experiences flat and slow fading. We

further assume that all channels have the same statistics, and

are subject to Rayleigh fading. The distribution of rate R is

continuous and is given by the Shannon channel capacityR =
log(1 + ρ|h|2) nats/s/Hz, where ρ is the normalized average

SNR, and h is the random channel coefficient with a complex

Gaussian distribution CN (0, 1).
We assume that each channel has only one designated

PU. The L channels are opportunistically available to SU. Al-

though we consider a system where there is only one SU, it

can be readily extended to the case when there are multiple

SUs and each SU has opportunistic access to a different set of

L channels. Each channel’s status is modeled as a continuous-

time random process that alternates between busy and idle

states. We consider a system in which the idle/busy states

of different PU channels are homogeneous, independent and

identically distributed. We assume that for all PUs, the time

durations of the idle and busy states are exponentially dis-

tributed with parameters a and b [11].

For selecting a channel, SU uses the scheme of sequen-

tial sensing and probing without recall [12]. We consider

sensing errors and denote the probability of false alarm as

Pfa and miss detection as Pmd. A sample realization of the
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Fig. 1. A sample realization of channel sensing, probing and

data transmission with PU returns

sensing/probing for channel selection is depicted in Fig. 1.

When SU intends to transmit, it searches for an available

channel by randomly choosing channels one at a time and

sensing/probing them. If the outcome of the sensing stage

is busy, the probing stage is skipped and SU randomly se-

lects another channel for sensing. The time cost for sens-

ing/probing a busy channel is τs. However, if the sensed chan-

nel is idle, SU proceeds with probing to determine the channel

quality and the time cost for sensing/probing an idle channel

is τs + τp. The transmitter compares the achievable data rate

to an optimal threshold (λ∗) pre-designed using the optimal

stopping theory. If the data rate is less than the threshold due

to the poor channel condition, the SU forgoes its transmission

opportunity and continues with sensing/probing another ran-

domly selected channel. However, if the data rate exceeds the

threshold, the SU proceeds with the data transmission. The

SU will periodically sense the channel after transmitting for

time Ts. The transmission of SU stops once it senses the re-

turn of a PU. If PU returns during SU’s transmission, the cur-

rent sub-packet being transmitted is destroyed, but the previ-

ously transmitted sub-packets are still valid.

3. DERIVATION OF CHANNEL ACCESS STRATEGY

We consider the problem of finding an optimal strategy for

SU to decide whether or not to transmit on an idle channel

based on its quality, so as to maximize the long-term average

throughput. We consider a maximum rate-of-return problem

in the optimal stopping theory framework [13,14]. The return

is defined as the net gain between the reward achieved and the

cost spent. The reward is the rate of the channel probed and

the cost is the total time taken to explore the channels so far.

Consider a round of channel searching and transmission

by the SU. Let N be the (random) number of channels ex-

plored by the SU in this round before it decides to transmit.

Accordingly, let TN be the total duration of the round, inclu-

sive of the time for which SU transmits data till it detects the

return of PU. Let T ′ be the effective data transmission time in

a round that excludes the time spent on exploration and peri-

odic sensing. And let RN be the transmission rate in a round.

The long term average throughput is therefore

x
△

=
E[RNT

′]

E[TN ]
. (1)
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The stopping ruleN governs when to stop exploring channels

and therefore governs the distributions of RN and TN .

The total time TN of a round consists of the time T ′

N

spent in sensing and probing to acquire a good channel and

the time Ttr for transmitting SU’s packets over this channel.

The time Ttr includes both the successfully and unsuccess-

fully transmitted packets until SU senses PU’s return, and the

time spent due to periodic sensing between the packets. We

have E[TN ] = E[T ′

N ] + E[Ttr].
The problem of maximizing the long-term average through-

put can be formulated as a maximal-rate-of-return prob-

lem [2]. The goal is to find an optimal stopping rule N∗ that

maximizes the average rate-of-return x, and the correspond-

ing maximal throughput x∗:

N∗ , arg max
N

E[RNT
′]

E[TN ]
, x∗ , sup

N

E[RNT
′]

E[TN ]
, (2)

where the maximization is over all stopping rules {N : N ≥
1, E[TN ] < ∞}. Similar to [2], we use optimal stopping

theory to solve (2) and have the following proposition.

Proposition 3.1. There exists an optimal stopping rule N∗

for the opportunistic spectrum access and is a pure threshold

policy given by

N∗ = min
{

n ≥ 1 : Rn ≥ λ∗
}

, (3)

where the optimal threshold λ∗ is the unique solution for λ in

E
[

(R− λ)+
]

= λ
(

E[Ks]τs + E[Kp]τp
)

/E[Ttr]. (4)

Here, R is a r.v. which refers to the rate whose CDF is

FR(r), and Ks and Kp are the number of channels sensed

and probed respectively to find a channel in which PU is idle

for the time (τs+ τp). Furthermore, the maximum throughput

is given by x∗ = λ∗E[T ′]
E[Ttr]

.

Thus, SU will transmit on a successfully contended chan-

nel if the transmission rate found by probing is bigger than a

threshold λ∗. Else, it continues to explore other channels.

To further analyze the maximal throughput x∗ and the op-

timal stopping rule N∗, i.e., the threshold λ∗ in terms of vari-

ous channel and system parameters, we first calculate the var-

ious expectations that were encountered in Proposition 3.1.

Proposition 3.2. For any pure threshold policyN = min{n :
Rn ≥ λ}, the expected times of effective transmission (E[T ′]),
channel access (E[T ′

N ]), transmission with periodic sensing

(E[Ttr]), and the rate of transmission (E[RN ]) are given by

E[T ′] =
Ts · e

−aTs

1− e−a(Ts+τs)(1− Pfa)
,

E[T ′

N ] =
τs +Q′

Iτp

( b
a+b

)e−a(τs+τp)(1− Pfa)(1− FR(λ))
,

E[Ttr] =
1− Pmde

−a(Ts+τs)

1− Pmd

(Ts + τs)

1− e−a(Ts+τs)(1− Pfa)
,

E[RN ] =

∫

∞

λ
r dFR(r)

1− FR(λ)
.

Here, Q′

I = ( a
a+b

)Pmd+( b
a+b

)
(

(1−e−aτs)Pmd+e
−aτs(1−

Pfa)
)

is the probability of finding a channel in which PU is

sensed to be idle.

The proof mostly relies on properties of Poisson pro-

cesses, and exponentially and geometrically distributed ran-

dom variables.

Using Proposition 3.1 and Equation (1), since λ∗ and x∗

satisfy x∗ = λ∗E[T ′]
E[Ttr]

, i.e., λ∗ = E[Ttr]
E[T ′] x

∗ = E[Ttr]
E[T ′]

E[RN∗ ]E[T ′]
E[TN∗ ] ,

we see that λ∗ is a solution to the fixed-point equation in λ,

given by

λ =
E[Ttr]

E[T ′]
x =

E[RN ]
E[T ′

N
]

E[Ttr]
+ 1

=

∫

∞

λ
rdFR(r)

c0 − FR(λ)

△

= ψ(λ).

(5)

Here, c0 = 1 +
E[T ′

N
](1−FR(λ))
E[Ttr]

is a constant that does not

depend on λ using Proposition 3.2. Similar to [2, Prop. 3.4],

we have the following result for finding λ∗ when Ts is given.

Proposition 3.3. For a given Ts, the fixed-point iteration

λk+1 = ψ(λk), (6)

for k ∈ {0, 1, 2, . . .} and for any nonnegative λ0 converges to

the optimum threshold λ∗.

4. JOINT OPTIMIZATION OF THRESHOLD AND

TRANSMISSION DURATION

We jointly optimize the transmission time Ts and the thresh-

old λ to maximize the throughput x = x(λ, Ts). We show

that for a given threshold rule N = min{n ≥ 1 : Rn ≥ λ},

i.e., for a fixed threshold λ, the optimum transmission time

Ts that maximizes throughput can be obtained by taking the

derivative with respect to Ts and equating to zero, i.e., solving

for Ts in ∂
∂Ts

x(λ, Ts) = 0. On simplification, this results in

the equation

ζ(Ts)
△

= c1 − c2e
−aTs − ac1Ts − ac3T

2
s = 0, (7)

where

c1 =
(a+b

b
)ea(τs+τp)(τs +Q′

Iτp)

1− Pfa
+

(1− FR(λ))

1− Pmd
τs,

c2 =
(a+b

b
)ea(τs+τp)(τs +Q′

Iτp)

1− Pfa
(1− Pfa)e

−aτs

+
(1− FR(λ))

1− Pmd
Pmde

−aτsτs,

c3 =
(1− FR(λ))

1− Pmd
.

It can be further shown that ζ(Ts) = 0 has a unique solu-

tion T ∗

s for Ts > 0 and T ∗

s < 1
a

. We use Newton’s method

with initial value 1
a

to obtain T ∗

s . We therefore propose

the alternating maximization scheme given by Algorithm 1

for finding λ∗ and T ∗

s that jointly maximize the throughput

x(λ, Ts).

5335



Algorithm 1 Joint maximization of throughput x(λ, Ts)

1: Given: sufficiently small error bounds ǫλ, ǫTs

2: Initialize λ = 1, Ts =
1
a

3: repeat

4: λold = λ, T old
s = Ts

5: repeat {Optimize λ for current Ts by fixed-point iter-

ations}
6: λ = ψ(λ)
7: until |λ− ψ(λ)| ≤ ǫλ/2
8: repeat {Optimize Ts for current λ by Newton’s

method}

9: Ts =
c2e

−aTs (aTs+1)−ac3T
2
s −c1

a(c2e−aTs−2c3Ts−c1)

(

= Ts −
ζ(Ts)
∂

∂Ts
ζ(Ts)

)

10: until |Ts −
c2e

−aTs (aTs+1)−ac3T
2
s −c1

a(c2e−aTs−2c3Ts−c1)
| ≤ ǫTs

/2

11: until |λold − λ| ≤ ǫλ and |T old
s − Ts| ≤ ǫTs

12: Return λ and Ts as approximations of λ∗ and T ∗

s

5. INTERFERENCE TO PRIMARY USER

If PU returns during SU’s transmission, there may be a col-

lision, leading to interference to PU. One way of quantifying

this interference is in terms of the fraction of time for which

each PU experiences interference in the long term. We calcu-

late the expected collision duration Tc at the end of each round

of transmission. Under ideal, error-free periodic sensing, the

expected duration between the return of the PU and the end

of SU’s current packet can be calculated as Ts −
(1−e−aTs )

a
.

Misdetections cause an additional expected collision duration

of Ts ·
Pmd

1−Pmd
. Thus,

E[Tc] = Ts −
(1− e−aTs)

a
+ Ts ·

Pmd

1− Pmd
. (8)

Taking into account that the expected duration of a round

is E[TN ], and the SU is equally likely to transmit on any of

the L channels, the average fraction of time for which each

PU experiences collision is

ηc =
1

L
·
E[Tc]

E[TN ]
, (9)

where E[Tc] and E[TN ] = E[T ′

N ]+E[Ttr] are given by Equa-

tion (8) and Proposition 3.2 respectively.

We see that ηc is an increasing function of Ts. Given a

bound η̂c on the interference, we consider the following mod-

ification of Algorithm 1 to find λ and Ts that maximize the

throughput, while causing low interference. If the outputs

λ∗ and T ∗

s from Algorithm 1 are such that the correspond-

ing ηc ≤ η̂c, then we use them as the threshold and packet

time respectively. If not, starting with λ∗ and T ∗

s , we use a

modified Algorithm 1 where in the inner loop for optimizing

Ts, each time the Ts obtained at the end of the loop is such

that corresponding ηc > η̂c, we lower Ts to the solution of

η̂c =
1
L
· E[Tc]
E[TN ] , obtained by Newton’s method.

6. NUMERICAL RESULTS

We present numerical results to evaluate the performance of

our proposed scheme. The values of the various parameters

used are ρ = 10, τs = 20 ms, τp = 30 ms, 1
a

= 500 ms,
1
b
= 666.67 ms, Pfa = 0.1 and Pmd = 0.05. For simplicity,

we assume that the optimal transmission time T ∗

s obtained in

Algorithm 1 meets the interference requirement ηc ≤ η̂c.

In Fig. 2, we compare our scheme with the three other

schemes – one without probing, one without periodic sensing

and one with POMDP in [8]. For fair comparison, the trans-

mission time T ′

s used for the scheme without periodic sensing

is the same as expected time of transmission E[Ttr] for the pe-

riodic sensing scheme. A threshold based strategy is used for

the scheme without periodic sensing, where the threshold that

maximizes throughput is derived using optimal stopping the-

ory, similar to the scheme with periodic sensing. For POMDP

scheme, we set the rates of all channels to E[R], slot length to

τs+Ts and the transition probabilities pbusy→idle = b(τs+Ts)
and pidle→busy = a(τs+Ts) so that average idle and busy times

of PUs are 1/a and 1/b. POMDP-based schemes dynamically

track the idle state of various channels in a slotted system and

maximize throughput by exploiting the spectrum opportuni-

ties. Our scheme fully utilizes the idle state of the channels it

accesses by periodic sensing, and together with exploitation

of channel quality information and optimization of transmis-

sion time, it outperforms the POMDP-based scheme.
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Fig. 2. Comparison between our scheme and other schemes:

Maximal throughput x∗ versus average SNR ρ

7. CONCLUSIONS

In summary, we proposed an opportunistic channel access

framework where the transmissions are interleaved with pe-

riodic sensing. For the proposed scheme, we obtained the

optimal threshold and the optimal transmission period that

jointly maximize the average throughput. We consider the

effect of sensing errors throughout the analysis. Numerical

results show that our scheme can offer a much higher through-

put than other well-known schemes.
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