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ABSTRACT

This paper addresses the problem of spectrum sensing from a
frequency domain approach using periodogram-based energy
detection which naturally yields a lower probability of false
alarm when compared with the time-domain detector. In this
paper, the periodogram-based detector is optimized based on
the likelihood ratio test and accurate expressions are derived
for the probability of false alarm and the probability of detec-
tion. In addition, the case of sensing with multiple antennas
is considered assuming that equal gain combining (EGC) is
used, which yields a hypoexponential decision statistic. The
high accuracy of the obtained models is verified by the ob-
tained simulation results. The performance is enhanced by
employing the optimized models. The receiver operator char-
acteristics clearly show that better operation points are ob-
tained as the SNR is increased.

Index Terms— Periodogram, Spectrum Sensing, Hermi-
tian quadratic forms, Equal gain combining, Fading.

1. INTRODUCTION

The cognitive radio (CR) technology offers more flexibility as
it enables dynamic spectrum sharing (DSS) between license-
exempt devices (secondary users) and license-holders (pri-
mary users) [1, 2]. A cognitive radio changes its communi-
cation parameters adaptively to locate and fit inside detected
spectrum opportunities, and therefore spectrum sensing is a
major function within a CR system. However, the problem of
spectrum sensing is still an open issue for the application of
cognitive radios.

In this paper we focus on energy detection from a fre-
quency domain (FD) perspective. In previous work, the au-
thors addressed the periodogram-based detector in [3], and
the performance of Bartlett’s Method in [4], and similarly
Welch’s method is considered in [5, 6] and the Multitaper
method is analyzed in [7]. One major and attractive finding
is that the FD detector naturally provides a lower probabil-
ity of false alarm when compared wit the time domain (TD)
conventional approach. Moreover, it is also shown that the pe-
riodogram detector is insensitive to the length of the observed

signal, which is not the case for the TD detector. In contrast
with what is previously provided, in this paper we extend the
work in [3,8] to obtain optimized models of the periodogram-
based detector. Moreover, the case of sensing with multiple
antennas is considered with equal gain combing (EGC).

The rest of this paper is organized as follows. In Section
II, the system model is described including the mathematical
notations employed throughout the paper and the investigated
sensing scenario. The optimized detector is derived in Sec-
tion III, and in Section IV, the case of sensing with multiple
antenna is investigated. In Section V, numerical results are
provided and finally conclusions are presented in Section VI.

2. SYSTEM MODEL

2.1. Mathematical Operators

Matrices will be denoted by boldfaced uppercase characters
and vectors will be denoted by boldface lowercase characters
throughout the paper. Other mathematical operators that will
be used are listed as follows.

• ⊕ is the direct sum operator.
• (.)H is the conjugate transpose.
• | . | is the magnitude operator.
• In is the n× n identity matrix.
• diag(A) is a diagonal matrix consisting of the main

diagonal elements of A.
• eig(A) is the set of eigenvalues of the matrix A.
• (̂.) is an estimated parameter.
• E[.] is the expectation operator.
• p(x; θ) the probability density function (PDF) of x with

θ as a parameter.
• L(.) is the likelihood ratio (LLR).
• L(.) is the log-likelihood ratio.
• H0 the null hypothesis (empty channel).
• H1 the alternate hypothesis (occupied channel).

The probability of false alarm and the probability of detection
are denoted by

Pf,Prob [chooseH1 | H0 = true] , (1a)
Pd,Prob [chooseH1 | H1 = true] , (1b)
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CN (µ,Σ) is the multivariate complex normal distribution
with mean vector µ and covariance matrix Σ. The notation
Gamma(a, b) is the gamma distribution with shape parame-
ter a and scale parameter b. The notation Hypo(s1, . . . , sN )
is the hypoexponential distribution with a number of N pa-
rameters [9].

2.2. System Setup

Let us consider the hypothesis test for the spectrum sensing
problem which is given by

H0 : x(t)= n(t), t = 0, . . . , N − 1, (2a)
H1 : x(t)= hs(t) + n(t), t = 0, . . . , N − 1, (2b)

where x(t) denotes the received signal at the secondary user,
s(t) is the transmitted primary user signal which is assumed
zero mean and decomposable into symmetric inphase and
quadphase components each with variance σ2

s/2. h denotes
a slow fading channel. Finally, n(t) is a complex (AWGN)
noise process with variance σ2

n. Let x ∈ CN×1 denote the
column vector of observed samples, i.e., x = {x(t)}N−1

t=0 ,
and let h denote the corresponding channel vector. Similarly,
let Ŝx(f) denote the periodogram estimated from the vector
x for the f th frequency index, where f = 0, 1, . . . , N − 1.
For both cases of the hypothesis test we have

x ∼

{
CN

(
0, σ2

nIN
)
, H0,

CN
(
0, σ2

sdiag
(
hhH

)
+ σ2

nIN
)
, H1.

(3)

The decision statistic for the hypothesis test can be written
into as a positive semi-definite hermitian quadratic form rep-
resentation. We have [3]

xHQfx
H1

R
H0

γ, f = 0, 1, . . . , N − 1, (4)

where γ is the sensing threshold, and Qf is a singular N ×N
matrix defined by [3]

Qf

=
1

N


1 ξ−1

f ξ−2
f . . . ξN−1

f

ξf 1 ξ−1
f . . . ξN−2

f

ξ2f ξf 1 . . . ξN−3
f

...
...

...
. . .

...
ξN−1
f ξN−2

f ξN−3
f . . . 1

 , (5)

where ξf is an N th primitive root of unity for the employed
f -th frequency index. The statistics of the variable given by
(4) as a central positive-semidefinite hermitian quadratic form
depends on the eigenvalues of the product of the covariance
matrix of the vector x and the matrix of the quadratic form
Qf given in (5). The characteristics of the product QfΣx are

studied in [3, 8] and the product is found to be rank-1 with a
single nonzero eigenvalue given by

eig (QfΣx) =

{
σ2
n, H0,

σ2
n +

σ2
s

N hHh, H1.
(6)

The probabilities of false alarm and detection are given by
[3, 8]

Pf (γ) = exp

(
−γ

σ2
n

)
, (7)

Pd(γ) = exp

(
−γ

σ2
n + 1

N σ2
sh

Hh

)
. (8)

3. THE NEYMAN-PEARSON DETECTOR

3.1. The Likelihood Ratio Test

The probability of detection can be maximized for a given
probability of false alarm using the Neyman-Pearson criteria
[10]. By making use of (7) and (8) the test is rewritten in
terms of the likelihood ratio such that the alternate hypothesis
H1 is accepted if the condition

L(Ŝ(f)) =
p(Ŝ(f);H1)

p(Ŝ(f);H0)
> γL (9)

is satisfied, where γL is the threshold chosen to satisfy a pre-
defined probability of false alarm of α, and ρ =

σ2
s

σ2
n

. We have

σ2
n

σ2
n +

σ2
s

N hHh
exp

(
ρŜ(f)hHh

Nσ2
n + σ2

sh
Hh

)
> γL. (10)

Hence, based on the LLR the test is rewritten in the form
L(Ŝ(f)) > log(γL), and after further simplification we get
the condition Ŝ(f) > γ∗

L where γ∗
L is the modified threshold

given by

γ∗
L =

σ2
nN + σ2

sh
Hh

ρhHh
log
(
γL +

ρ

N
γLh

Hh
)
. (11)

Based on the modified threshold, the probability of false
alarm is given by

Pf (γL;N, ρ,h) = exp

(
−
(
1 +

N

ρhHh

)

× log
[
γL

(
1 +

ρ

N
hHh

)])
, (12)

and the probability of detection is obtained by

Pd(γL;N, ρ,h)

= exp

(
− N

ρhHh
log
[
γL

(
1 +

ρ

N
hHh

)])
. (13)
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3.2. Average Probabilities Over Rayleigh fading

Let us consider a Rayleigh fading channel, such that the chan-
nel instants are independent and identically distributed, with
Ω = E

[
| h |2

]
. In this case, we have hHh ∼ Gamma (N,Ω).

The average probabilities of false alarm and detection are
obtained by averaging (12) and (13) over the probability dis-
tribution function of hHh. The probability of false alarm is
given by

Pf,Ray(γL) =
1

Γ(N)ΩN

×
∫ ∞

0

(
γL +

ρ

N
γLz

)−1− N
ρz

zN−1 exp
(
− z

Ω

)
dz, (14)

where Γ(N) is the gamma function [11]. By applying
Jensen’s inequality [12], Pf,Ray(γL) will have a minimum
bound given by

Pf,Ray(γL) ≥
(

1

γL(1 + ρΩ)

)1+ 1
ρΩ

. (15)

It can be seen that the minimum probability over Rayleigh
fading is not affected by the vector length N . This is similar
to what is found in [3], which shows that the performance of
the periodogram-based detector (the non optimized model) is
not affected by the vector length used to compute the estimate.
Similarly, the average probability of detection is obtained by

Pd,Ray(γL) =
1

Γ(N)ΩN

×
∫ ∞

0

(
γL +

ρ

N
γLz

)− N
ρz

zN−1 exp
(
− z

Ω

)
dz, (16)

and the minimum bound for the probability of detection is

Pd,Ray(γL) ≥
(

1

γL(1 + ρΩ)

) 1
ρΩ

. (17)

3.3. Average Probabilities Over Rician fading

Let us consider a Rician fading process with a K-factor of
κ = ν2

a . In this case the sum of the instantaneous squared
channel magnitudes is chi-square distributed with 2N degrees
of freedom and noncentrality parameter of 2Nν2

a . The average
probability of false alarm is obtained by

Pf,Rice(γL) =
1

a

∫ ∞

0

(
γL +

ρ

N
γLz

)−1− N
ρz

× exp

(
−z +Nν2

a

)( z

Nν2

)N−1
2

IN−1

(
2ν

a

√
Nz

)
dz,

(18)

and the minimum bound for the probability of false alarm is
given by

Pf,Rice(γL) ≥
(

1

γL (1 + ρ(2 + 2ν2)

)1+
1

ρ(2 + 2ν2)

(19)
and the average probability of detection is given by

Pd,Rice(γL) =
1

a

∫ ∞

0

(
γL +

ρ

N
γLz

)− N
ρz

× exp

(
−z +Nν2

a

)( z

Nν2

)N−1
2

IN−1

(
2ν

a

√
Nz

)
dz,

(20)

where In(.) is the nth order modified Bessel function of the
first type [11]. The minimum bound for the probability of
detection is given by

Pd,Rice(γL) ≥
(

1

γL (1 + ρ(2 + 2ν2)

) 1

ρ(2 + 2ν2)
. (21)

4. MULTIPLE ANTENNA SENSING WITH EGC

In this part, it is assumed that the secondary user employs
multiple antennas to perform spectrum sensing. Let K de-
note the number of antennas, and let Ŝ(i)(f) denote the deci-
sion variable computed at the ith branch, where i = 1, . . . ,K
and let xi and hi denote the corresponding observations and
channel vectors respectively. For simplicity, but without loss
of generality, all branches are assumed independent and iden-
tically distributed. Assuming that EGC is employed to make
the final test variable, which is in this case can be written as

ŜK(f) =

K⊕
i=1

xH
i Qfxi. (22)

It can be seen that ŜK(f) is another hermitian quadratic form,
but in this case the rank of the product of the covariance ma-
trix and the matrix of the quadratic form is K. This can be
verified by treating ŜK(f) as a block-diagonal matrix and ap-
plying the theorems within [13, Sec. 0.9.2] Therefore, in this
case there is a number of K nonzero eigenvalues. For the
case of H0 all eigenvalues are identical and equal to the noise
variance, but for the case of the hypothsis H1, the nonzero
eigenvalues are different and equal to σ2

n +
σ2
s

N hH
i hi where

i = 1, . . . ,K. Henceforth, for each case of the hypothesis
test we have the following statistical properties,

ŜK(f)

∼

{
Gamma

(
K,σ2

n

)
, H0,

Hypo
(
σ2
n +

σ2
s

N hH
1 h1, . . . , σ

2
n +

σ2
s

N hH
KhK

)
, H1.

,

(23)
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Fig. 1. Receiver operator characteristics for detection over
Rayleigh fading
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Fig. 2. Receiver operator characteristics for detection over
Rician fading

i.e., we have

p(x;H0) =
1

Γ(N)σ2N
n

xN−1 exp

(
− x

σ2
n

)
, (24)

p(x;H1) =
K∑
i=1

Li(0)

σ2
n +

σ2
s

N hH
i hi

exp

(
−x

σ2
n +

σ2
s

N hH
i hi

)
,

(25)

where Li(0) can be seen as the Lagrange basis polynomial
associated with the ith eigenvalue of the quadratic form, and
Li(0)is given by

Li(0) =
K∏
j=1
j ̸=i

N
ρ + hH

i hi

hH
i hi − hH

j hj
(26)

In this case, the likelihood ratio test is obtained such that the
hypothesis H1 is accepted when the condition given by

L(ŜK(f)) =
p(ŜK(f);H1)

p(ŜK(f);H0)
> γL (27)

is satisfied. The test for the case of EGC is given by

Γ(N)σ2N
n

(
N

σ2
s

)K K∑
i=1

K∏
j=1
j ̸=i

1

hH
i hi − hH

j hj

× exp

(
− ŜK(f)ρhH

i hi

Nσ2
n + σ2

sh
H
i hi

)
H1

R
H0

γ. (28)

In this case, obtaining the expressions for the probabilities
of false alarm and detection is complex, which is beyond the
scope of this paper.

5. SIMULATION RESULTS

The performance is inspected in terms of the receiver operator
characteristics (Pd vs Pf ). Figure1 depicts the receiver oper-
ator characteristics for transmission over fading channels, and
Figure2 depicts the performance for the case of Rican fading.
Both figures are simulated for vector lengths of N = {8, 16}
and various cases for the variable ρ. For Rayleigh fading
Ω = 1 and for Rician fading a = 3 and ν = 2. Monte Carlo
simulations are repeated for a number of 105 trials, and an
adaptive Gaussian quadrature is employed for numerical inte-
gration. It can be seen from the results in both figures that the
performance is enhanced when ρ is increased. In addition, it
can be seen that for the same set of parameters, changing the
length of the vector used to obtain the periodogram does not
affect the performance, i.e, changing the value of N will al-
ways yield the same receiver operator characteristics, which
is similar to the trend found in [3] for the case of raw peri-
odograms.

6. CONCLUSION

In this paper, optimization of the periodogram-based energy
detector is investigated. An Optimized model is derived based
on the LRT for both cases of Rayleigh and Rican fading, and
the impact of employing multiple antenna for spectrum sens-
ing with EGC is also addressed. The results reveal the ac-
curacy of the derived mathematical models and simulations
show that the performance is enhanced when the SNR is in-
creased. For the case of EGC, the PDF of the test statistic
is hypoexponetial with a number of phases equal to the em-
ployed number of branches. Therefore, in this case it is very
difficult to derive an expression for the average probabilities
of false alarm and detection because of the presence of the
Lagrange basis polynomials. For Future work, this issue will
be considered in addition to other methods such as selection
combining and switch-and-stay combining.
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