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ABSTRACT
We consider the problem of decentralized online learning and
channel access in a cognitive radio network. Based on an existing
distributed access policy proposed in [1], named the ρRAND policy,
we propose an adaptive decentralized access policy in which
the distributed coordination among secondary users is adjusted
at different stages of learning accuracy of the primary network.
Specifically, we exploit a ”perceived population” by each secondary
user to reduce collision events at different learning stages. We
design a metric that measures the level of learning accuracy and
use that as an indicator to adjust the ”perceived population” by
each secondary user. Simulations show that our proposed adaptive
policy improves the leading constant of the normalized regret and
can provide substantial improvement over the ρRAND policy.

Index Terms— Opportunistic Spectrum Access, Decentralized
Multi-Armed Bandit, Cognitive Radio, Adaptive Learning

1. INTRODUCTION

Designing dynamic spectrum access to efficiently utilize the
spectrum is one of the main objectives in cognitive radio networks.
A hierarchical cognitive radio network consists of licensed primary
users for accessing the spectrum and the secondary users who
opportunistically use the idle channels that are not occupied by
the primary users. Since the channel availability statistics of the
primary network are typically unknown to the secondary users
(SUs), they rely on limited spectrum sensing to search for idle
channels and make decisions based on observation histories for
channel access. In designing a distributed policy for spectrum
access among SUs, where there is no information exchange or
access arrangement among users, the challenges involved not only
include online learning of the primary channel statistics using local
sensing observations, but also the distributed mechanism to resolve
collisions among SUs.

Assume a cognitive radio network with N independent primary
channels and M SUs, where N ≥M . For centralized scheduling of
users’ access, the problem can be formulated as the classical Multi-
Armed Bandit (MAB) problem [2]–[4]. The throughput loss over
time due to learning of the primary channel statistics as compared
to the ideal case with known channel statistics is measured by
regret. The minimum growth of regret over time under an efficient
learning algorithm is characterized in [3], and is shown to have
a logarithm growth over time. For distributed access by the SUs,
the problem formulation can be viewed as the decentralized MAB
problem. Motivated by dynamic spectrum access, decentralized
policies among multiple players are proposed in [1], [5], [6].
These policies use different mechanisms to achieve ”coordination”

among SUs to orthogonalize their access to the M -best primary
channels. They all achieve logarithmic growth of regret, which are
order-optimal. Note that the efficiency of a learning algorithm is
measured not only by the asymptotic growth rate of regret, but
also by the scaling constant of the growth rate. All aforementioned
decentralized policies are order-optimal with a logarithm growth
rate of regret. However, they perform differently in terms of the
scaling constant. Thus, further improvement should be with respect
to the improvement on the scaling constant. In this work, we aim
at improving the scaling constant of the growth rate by designing
an access policy that is adaptive to different learning stages.

In this paper, we design an adaptive decentralized access policy
for spectrum access. In particular, we focus on modifying the
ρRAND policy proposed in [1] which is a very simple distributed
learning and access policy requiring least amount of coordination
among users. By noticing that the learning accuracy of the pri-
mary channels affects the access collision statistics, we adapt the
distributed access coordination among SUs at different stages of
learning accuracy. Specifically, we exploit a ”perceived population”
by each SU to reduce collision events at different learning stages.
We design a metric that measures the level of learning accuracy
and use that as an indicator to adjust the ”perceived population”
by each SU. Simulations show that our proposed adaptive policy
improves the scaling constant of the normalized regret and can
provide substantial improvement over the ρRAND policy.

2. NETWORK MODEL

Assume M SUs independently searching for the idle channels
among the N channels licensed to a slotted primary network in a
cognitive radio network. We assume that M ≤ N . The availability
state of the ith channel in the primary network at slot n is
denoted as Xi(n), where Xi(n) = 1, if channel i is available
at time slot n, and 0 otherwise. The availability statistic for each
channel i in the primary network is assumed to evolve as an i.i.d.
Bernoulli random process over n, with the mean θi ∈ [0, 1],
i.e., Xi(n) ∼ Bernoulli(θi), ∀n, where θi = E[Xi(n)], for
i = 1, · · · , N . We assume θi’s are distinct to each other and
are unknown to the SUs. We denote the mean channel availability
vector as θ

∆
= [θ1, θ2, ..., θN ]T . We assume M is known to all

SUs, and channel sensing at all SUs is perfect. At the beginning of
each slot n, each SU selects a channel to sense, and if available, it
will access the channel. Using the sensing outcome and observation
history, the SUs learn the mean channel availability θ over time.

For distributed spectrum access among SUs, we assume a
collision model for multiple access: If more than one SU access
the same channel, it will result in failed transmissions and zero
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throughput for all users involved. Otherwise, the sole SU accessing
a primary channel will receive a unit throughput.

The total throughput obtained up to slot n using a learning and
access policy is given by

∑N

i=1

∑M

j=1 θiE[Sj

i (n)], where Sj

i (n)
denotes the number of times, up to current slot n, that SU j is
the only user to sense channel i. In an ideal scenario, where θ is
known to users, the total throughput up to slot n is n

∑M

k=1 θk∗ ,
where k∗ represents index of the kth highest element in θ. For
any learning and access policy, regret is a metric used to measure
the throughput loss of a given policy due to learning. It is defined
as the difference over throughput between the ideal scenario and a
given policy, i.e.,

R(n,θ,M)
∆
= n

M∑

k=1

θk∗ −

N∑

i=1

M∑

j=1

θiE[Sj
i (n)]. (1)

Considering the above model, the design objective is to device a
decentralized policy that minimizes the regret, with no exchange of
information among the SUs. For a distributed access policy, each
SU will select a channel to access based on its own estimate of the
mean availability of channels.

3. DECENTRALIZED SPECTRUM ACCESS POLICIES

The UCB1 algorithm proposed in [7] is a sample-mean based
index policy for the single user learning and access. The existing
decentralized policies proposed in [1], [5], [6] are considered as the
extensions of the UCB1 algorithm to the distributed case. In UCB1
algorithm, channels are ranked at each SU using a statistic called
g-statistic. Let T j

i (n) denote the number of times that the SU j
senses channel i up to time slot n. If SU j selects channel i to
sense at time slot n, then it obtains the value of Xi(n) and records
this value as Xj

i (T
j
i (n)). Let Xj

i (n)
∆
= [Xj

i (1), · · · , X
j
i (T

j
i (n))]

T

be the vector holding the sensing observation history of channel i
up to time slot n at SU j. Using X

j

i (n), SU j estimates θi of
channel i at time n as

θ̂ji (T
j
i (n))

∆
=

1

T j
i (n)

T
j
i
(n)∑

k=1

Xj
i (k). (2)

The g-statistic at SU j for channel i is defined as

Iji (n)
∆
= θ̂ji (T

j
i (n)) +

√
2 log n

T j

i (n)
. (3)

It will be used as an index for SU j to rank the channels. In the
single user case (M = 1), using the above index, the user selects
the channel with the highest index at time n. For multiple SUs, each
user computes its own index vector Ij(n)

∆
= [Ij1(n), · · · , I

j

N(n)]T

based on its own observation history. Then, each user will select the
channel with the kth highest ranking in Ij(n) to access. Distributed
learning policies [1], [5], [6] propose different mechanisms for
access coordination to ensure that the SUs choose different channels
but within the first M -highest indexed channels. Among these
policies, the ρRAND policy in [1] is a very simple distributed policy,
requiring the least amount of coordination among users and it is
order-optimal. We aim to modify the ρRAND policy using adaptive
learning to improve the performance. We briefly review the ρRAND

policy below:

1) Select channel to sense and access: At slot n, each SU j
obtains its ranking vector Ij(n). It then selects the rthj best

channel among the M -best channels to sense, where rj is
drawn from a uniform distribution: rj

i.i.d.
∼ Uniform(M). Let

σ(rj, I
j(n)) be the channel index of the rthj highest rank in

Ij(n). If the channel is available, then SU j accesses the
channel.

2) Reselect channel under collision: Each SU j uses an ac-
knowledgement for collision feedback. SU j will redraw its
rank rj ∼ Uniform(M) only if there is collision in the
previous transmission. Otherwise, it will keep using the rank
rj generated previously to determine which channel to access.

4. AN ADAPTIVE LEARNING POLICY BASED ON
PERCEIVED POPULATION

To measure the efficiency of a learning algorithm, we need
to consider both the asymptotic growth rate of regret, de-
noted as r(n), and the scaling constant of the growth rate,
limn→∞ R(n,θ,M)/r(n). It has been shown in [2] that an
efficient learning algorithm for centralized MAB problems should
have a logarithm growth rate of regret. All aforementioned de-
centralized policies are order-optimal with a logarithm growth
rate of regret. What is unclear is how they perform in terms of
the scaling constant. This differentiates the performance among
these existing decentralized algorithms. Note that all the existing
proposed policies rely on the exact knowledge of the secondary
network population M to resolve collisions among SUs. We aim
at improving the scaling constant of the growth rate by designing a
learning policy that exploits a ”perceived population” by each SU.

Define Uj(n) to be a “perceived population” at SU j, i.e., what
the user perceives to be the current population. The user will use
this parameter in determining the primary channel to access. The
“perceived population” is adaptive over time as a function of M :
Uj(n) = f(M,n). Note that using Uj(n) 6= M for learning and
access is equivalent to having an inaccurate estimate of M of the
secondary network population, and in the long run, will lead to a
linear growth rate of regret [8]. However, in the short time, it can
improve the performance by reducing collision events. Fig. 1 shows
an example of the impact of the population overestimation on the
performance of the ρRAND policy, where Uj(n) = M+1, ∀j, n. We
see an improvement of the regret during the transient behavior at
the early time slots.

To understand this behavior, we note that each SU learns the
mean channel availabilities θ over time for access decision in a
decentralized fashion. There are two types of events contribute
to the regret R(n,θ,M): 1) Not choosing M -best channels: the
channel i that SU j accesses has the mean availability θi that
is not among the top M highest ones in θ; 2) Collision among
SUs: distributed access results in collision and thus unsuccessful
transmissions for all colliding users. Although the two types of
events are correlated, the coordination mechanism in a decentral-
ized access policy directly affects the type 2 event. Note that the
SUs are more prone to collision at the beginning. This is because
the estimate of the mean channel availability θ̂ji (T

j
i (n)) in (2) is

very inaccurate, resulting in the channel ranking in Ij(n) varies
over time. In other words, the kth highest ranking in Ij(n) maps
to different channel indexes more frequently. For SUs j1 and j2
selecting the channels which have the kth

1 and kth
2 ranks among

M -highest values in Ij(n), they may collide in the next time slot,
even though they do not collide in the current slot. At this stage, if
we relax the constraint of selecting among the M -best channels to
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among the U -best channels, where U > M , it potentially decreases
the collision among the SUs and also increases the chance of
selecting one of the true M -best channels. This is equivalent to
use a larger “perceived population” Uj(n) > M at SU j. As
demonstrated in Fig. 1, by allowing larger perceived population,
the regret improves at early time slots.

However, as the learning of θ improves over time, the channel
ranking in Ij(n) becomes more accurate and stable. Once two users
select two different channels for access, they are likely to stay on
the respective selected channels and remain collision free. In this
case, using larger perceived population will increase the probability
of selecting the channels outside of the M -best channels and hence
has a negative impact on the throughput. Therefore, at this stage, it
is necessary to use the true population as the “perceived population”
for each SU.

Based on this analysis on the transient and long-term behavior,
we propose an adaptive learning algorithms which adapt the “per-
ceived population” Uj(n) at each SU j to the different stages of
learning of primary channel statistics to improve both the short-
term and long-term regrets.

The main challenge in designing the adaptive learning algorithm
is to determine the switching point for Uj(n). We propose a
thresholding method in determining Uj(n). Let OM be the set of
indexes of the true M -best channels,

OM =
{
im : θim ∈ {θ(1), · · · , θ(M)}, 1 ≤ m ≤M

}
(4)

where {θ(i)} is the ordered statistics of {θi} with θ(1) > · · · >

θ(N). Let Ôj

M (n) denote the set of indexes of the empirical M -best
channels for SU j at time slot n,

Ôj

M (n) =
{
im : θ̂jim(T j

i (n)) ∈
{
θ̂j(1)(T

j
i (n)), · · · , θ̂

j

(M)(T
j
i (n))

}
, 1 ≤ m ≤M

}
. (5)

Now we denote δjW (n) as the average number of estimated M -best
channels in common during a window period W for SU j given
by

δjW (n) =

∑W

i=1

∣∣∣Ôj

M (n) ∩ Ôj

M (n− i)
∣∣∣

W
, n ≥W (6)

where 0 ≤ δjW (n) ≤M . Denote the normalized version of δjW (n)
as δ̄jW (n) = δjW (n)/M . Denote ∆j(n) as the cumulative moving
average of δ̄jW (n) as

∆j(n) =

∑n

n′=W δ̄jW (n′)

n−W
(7)

where we have 0 ≤ ∆j(n) ≤ 1. This quantity can be computed
recursively based on the current δ̄jW (n) and previous ∆j(n − 1)
without the need to store all the history data as

∆j(n) =
1

n−W
δ̄jW (n) +

(n−W − 1)

n−W
∆j(n− 1), for n ≥W.

(8)

As the estimate of θ improves over time, the difference between
Ôj

M (n) and OM reduces. Thus, ∆j(n) indicates the level of
accuracy of the empirical M -best channels to the true M -best
channels. In other words, the metric ∆j(n) provides a measure
of the learning accuracy over time.

The value of ∆j(n) will be tested against thresholds {τk} to de-
termine the switching point for Uj(n), where k = 1, · · · ,K and K
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Fig. 1. Normalized regrets R(n,θ,M)
logn

under the ρRAND policy using
“perceived population” Uj , θ = [0.1, 0.2, ...,0.9], M = 4, N = 9.

indicates the total number of switching points used. We summarize
the main steps of the modified ρRAND policy with adaptive learning
and access, named Rand-ALC(K), below. Detailed description is
shown in Algorithm 1.

1) Start with Uj(n) = M +K.
2) Compute ∆j(n): At every time slot n, each SU j obtain

∆j(n).
3) Update Uj(n): If ∆j(n) ≥ τk, then the SU j set Uj(n) =

Uj(n − 1) − 1, where τk is the current threshold used, and
1 ≤ k ≤ K; otherwise, keep Uj(n) = Uj(n− 1).

4) Run the ρRAND policy (randomized access over the Uj(n)-best
channel)

As we will see in simulations, using Rand-ALC(1) with K = 1 and
single threshold τ is already effective in improving the throughput
performance and regret.

5. SIMULATION RESULTS

In this section, we present the simulation results obtained by the
proposed policy. We assume a cognitive radio network with N = 9
channels and M = 4 SUs. The channel availability Xi(n) follows
i.i.d. Bernoulli random process, for i = 1, · · · , N .

To demonstrate how the metric ∆j(n) reflects the level of
learning accuracy, in Fig. 2, we plot the trajectory of the averaged
∆j(n) over time. We set the mean channel availability randomly
as θ = [0.3, 0.34, 0.5, 0.6, 0.67, 0.91, 0.2, 0.8, 0.7]T , and window
size W = 10. We fix Uj(n) value over time, and let each
user implements the ρRAND policy with the “perceived population”
Uj(n), where Uj(n) = M , M + 1, or M + 2. As we see,
the trajectory of averaged ∆j(n) shows two stages of learning
at different rates, the initial learning with much faster rate of
improvement, and then switched to a slower learning speed. In
addition, we see that the rate of learning is not sensitive to the
variation of Uj(n).

In Fig. 3, we compare the normalized regret R(n,θ,M)/ log n
under the proposed Rand-ALC(1) policy and the ρRAND policy. We
also compare them with Rand-ALCgen(1), a genie-aided policy
where we use normalized regret curve under fixed Uj(n) = M
and Uj(n) = M+1 (e.g. in Fig. 1) to find the switching time nsw
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Algorithm 1 : Rand-ALC(K) policy for SU j

1) Input:
n: Current time slot
M : Number of SUs
N : Number of channels
T : Horizon length
W : Window Size
τk, k = 1, · · · , K: Threshold
Uj(n): Perceived population of SU j at time slot n
∆j(n): Level of learning accuracy of the empirical to the
true M-best channels

2) Init: Sense each channel once
n← N + 1, Uj(n)←M +K, ∆j(n)← 0, k ← K;

3) Start Loop n← n+ 1

i) Update Uj(n): If ∆j(n)
M
≥ τk, then Uj(n) = Uj(n− 1)− 1,

k = k − 1; otherwise, Uj(n) = Uj(n− 1);
ii) Run ρRAND policy (randomized access over Uj(n)-best chan-

nel);
iii) Obtain Ôj

M (n): Set of indexes of empirical M -best channels
for SU j at time slot n;

iv) Compute δjW (n) as in (6), and compute δ̄jW (n);
v) Update ∆j(n) as in (8).

Stop Loop when n = T .

for Uj(n) from M+1 to M to produce a lower regret. The same θ

value as in Fig. 2 is used in Fig. 3. We see that, our proposed policy
with threshold τ = 0.98 substantially outperforms the ρRAND policy
in both transient and long-term behavior. Over 30% improvement is
seen in long-term normalized regret, which indicates the improved
scaling constant of the growth of regret. The performance of our
proposed policy also tracks that of the genie-aided Rand-ALCgen(1)
policy very closely.

Similar to the experiment above, Fig. 4 shows the normalized
regret under a different mean channel availability statistics, where
θ = [0.51, 0.52, · · · , 0.59]T , i.e., very similar mean statistics
among the channels. As can be seen, our proposed policy again
substantially outperforms the ρRAND policy ( 20% improvement) and
approaches the genie-aided Rand-ALCgen(1) policy.
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Fig. 2. Average ∆j(n) vs. time slot n. (W = 10, θ =
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6. CONCLUSION

We consider the problem of decentralized online learning and
channel access in a cognitive radio network. Based on the existing
distributed access policy, the ρRAND policy, we propose an adaptive
decentralized access policy Rand-ALC(K). It adjusts the distributed
coordination mechanism among SUs by adaptively changing the
”perceived population” at each SU to reduce collisions at different
learning accuracy stages. We design a metric that measures the
level of learning accuracy and use that as an indicator to adjust
the ”perceived population” by each SU. Simulations show that
our proposed adaptive policy improves the scaling constant of the
normalized regret and can provide substantial improvement over
the ρRAND policy.
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