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ABSTRACT

Distributed detection with dependent observations is always a
challenging problem. In this paper, we consider a special de-
pendent case where sensors share some common information.
Specifically, we investigate a tandem network with sensor 1
sending a one-bit decision to sensor 2 where the final decision
is made. Along with their common observation X2, sensors 1
and 2 possess their conditionally independent measurements
X1 and X3, respectively. After obtaining the relationship be-
tween the optimal sensor 1 rule and sensor 2 fusion rule, we
derive the necessary condition for the optimal sensor decision
rules for both sensors. We compare the optimal rules with
two suboptimal rules for distributed detection of a constant
DC signal in Gaussian noise with various of signal-to-noise
ratios.

Index Terms— Distributed Detection, Common Infor-
mation, Tandem Network, Conditionally Dependent Obser-
vations

1. INTRODUCTION

Distributed detection has been an active research area with a
focus on the analysis and optimization of the detection per-
formance via the design of local decision rules as well as the
fusion rule [1]. While the optimal fusion rule is known to be
the likelihood-ratio test (LRT) at the fusion center [2–4], de-
signing local sensor decision rules is much more complicated
because of the distributed nature. Most of the results are ob-
tained under the assumption that local sensor observations are
assumed to be conditionally independent (CI) given the un-
derlying hypothesis (see [1, 5, 6] and the references therein).
For the binary hypotheses testing problem, the optimality of
local LR quantization has been established under various con-
ditions [5–8].

The problem of designing the optimal local decision rules
becomes significantly more difficult without the conditional
independence assumption. The optimal design problem is
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shown to be an NP-hard problem in general [9]. In addi-
tion, the form of the optimal sensor decision rules is often
unknown and is coupled with other sensor rules and the fu-
sion rule. Even for the binary hypotheses testing problem
with binary sensor output, local LRTs are often no longer op-
timal [10, 11]. Suboptimal approaches are often employed to
solve the optimization problem. In [12], some numerical ap-
proaches are proposed for distributed detection of weak sig-
nals. Another popular approach is to fix the local sensor rules
to be local LRTs and to try to tune their thresholds [13, 14].
The remarkable complexity of the optimization problem was
demonstrated via a distributed binary hypotheses testing prob-
lem where two sensors observe a shift in mean of dependent
Gaussian noises [15, 16]. Recently, it was discovered that the
local decision rules may admit similar simplified structures
as in the CI case for a wide range of scenarios, by modeling
the detection system using a novel hierarchical conditional
independence (HCI) framework with the addition of a hidden
variable [17].

In this paper, we consider another class of distributed
detection problems where the conditional dependency is in-
troduced due to the common information shared between
sensors. This type of shared information arises, for instance,
when sensors have overlapped measurements, e.g., surveil-
lance cameras monitoring from different angles. In such
cases, each sensor possesses both the common shared infor-
mation and their individual “private” information. The design
problem is how to best utilize the common information at
both the sensors and the fusion center to achieve best possible
performance. As a first attempt, we investigate a 2-sensor
tandem network with sensor 1 sending a one-bit decision to
sensor 2 where the final decision is made. Along with their
common observationX2, sensors 1 and 2 possess their condi-
tionally independent measurements X1 and X3, respectively.
After obtaining the relationship between the optimal sensor
1 rule and sensor 2 fusion rule, we derive the necessary con-
dition for the optimal sensor decision rules for both sensors.
We compare the optimal rules with two suboptimal rules for
distributed detection of a constant signal in Gaussian noise.
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2. PROBLEM SETUPS

We consider a binary distributed detection problem consist-
ing of two sensors connected in a serial structure. Sensor 1
observes {X1, X2} and sensor 2 observes {X2, X3} where
X2 is the shared common information and X1, X3 are “pri-
vate” information, X1, X2, X3 are jointly conditionally inde-
pendent given the underlying hypothesis H ∈ {0, 1} such
that

p(X1, X2, X3|H) =

3∏
i=1

p(Xi|H). (1)

Sensor 1 sends a one-bit decision U1 based on its own ob-
servation to sensor 2 where the final decision U0 ∈ {0, 1}
is made based on the received U1 and its own observation
X2, X3. The system design goal is to jointly design the sensor
1’s decision rule P (U1|X1, X2) = γ1(X1, X2) and the cor-
responding fusion rule P (U0|U1, X2, X3) = γ0(U1, X2, X3)
at sensor 2. Given γ1, the optimal γ0 is just a likelihood ratio
test (LRT) at sensor 2.

2.1. Intuitive Suboptimal Sensor Rule Designs

Obviously, due to the common information X2, the observa-
tions at sensor 1 and sensor 2 are no longer conditionally in-
dependent even if X1, X2, X3 are jointly conditionally inde-
pendent. As X2 is completely available at sensor 2, one may
tempt to draw the conclusion such that the optimal design γ11
should ignore X2 at sensor 1 by sending U1 as a function of
X1 only. It is straightforward to show that the optimal γ11 un-
der this approach is obtained by choosing γ1 as a LRT based
on X1 with a suitable threshold τ1. It can be further shown
that γ11 can be a locally optimal design with an optimized τ1.
Such approach, however, is often not optimal.

Another somewhat intuitive approach is to ignore the fact
thatX2 is also available at sensor 2. As a result, this approach
utilizes both the X1 and X2 information at sensor 1 by per-
forming a LRT γ21(X1, X2) based on X1, X2. Surprisingly,
this approach often yields a better performance than γ11 . How-
ever, as we will show later, neither is this approach is optimal
in general.

3. THE OPTIMAL DECISION RULES

3.1. Evaluating the Distributed Detection Performance

The key to solve the optimal decision rules design problem is
to derive the performance measure P (U0|H). For any given

γ1 and γ0, we have

P (U0|H) =

1∑
U1=0

ˆ
P (U0, U1, x1, x2, x3|H)dx1x2x3

=

1∑
U1=0

ˆ
P (U0|U1, x1, x2, x3, H)

× p(U1, x1, x2, x3|H)dx1x2x3

(a)
=

1∑
U1=0

ˆ
P (U0|U1, x2, x3)p(U1|x1, x2, x3, H)

× p(x1, x2, x3|H)dx1x2x3
(2)

(b)
=

1∑
U1=0

ˆ
P (U0|U1, x2, H)p(U1|x1, x2)

× p(x1|H)p(x2|H)dx1x2,

where (a) and (b) are obtained by Markov Chain property of
the problem.

3.2. Optimal Sensor 1 Rule for a Given Fusion Rule

We examine the problem under the Bayesian framework
where the prior probability P (H = 0) = π0 > 0 and
P (H = 1) = π1 = 1− π0 > 0 are given. The probability of
error Pe can be written as

Pe = P (H = 0)P (U0 = 1|H = 0)

+ P (H = 1)P (U0 = 0|H = 1)

= π1 − π0(
π1
π0
P (U0 = 1|H = 1)− P (U0 = 1|H = 0)).

(3)

From (3), minimizing Pe is equivalent to maximizing
C = π1

π0
P (U0 = 1|H = 1) − P (U0 = 1|H = 0). With the

expanded expression (2), we have

C =
π1
π0
P (U0 = 1|H = 1)− P (U0 = 1|H = 0)

=

1∑
U1=0

ˆ {π1
π0
P (U0 = 1|U1, x2, H = 1)×

p(x1|H = 1)p(x2|H = 1)− P (U0 = 1|U1, x2, H = 0)×

p(x1|H = 0)p(x2|H = 0)
}
p(U1|x1, x2)dx1x2. (4)

Given the fusion rule P (U0 = 1|U1, x2, H), to minimize
the probability of error, we get the optimal sensor 1 decision
rule as given in (5). While p(x1|H=1)p(x2|H=1)

p(x1|H=0)p(x2|H=0) indeed is the
LRT based on X1, X2, the optimal local sensor rule is not be-
cause the other factor P (U0=1|U1=1,x2,H=1)−P (U0=1|U1=0,x2,H=1)

P (U0=1|U1=1,x2,H=0)−P (U0=1|U1=0,x2,H=0)

is in general a function of x2 as well.
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γo1 = P (U1 = 1|x1, x2) =

{
1, P (U0=1|U1=1,x2,H=1)−P (U0=1|U1=0,x2,H=1)

P (U0=1|U1=1,x2,H=0)−P (U0=1|U1=0,x2,H=0)
p(x1|H=1)p(x2|H=1)
p(x1|H=0)p(x2|H=0) >

π0

π1
;

0, otherwise.
(5)

3.3. Optimal Decision Rules for the Gaussian case

Eqn. (5) gives the form of the local sensor rule if the fu-
sion rule is fixed. Next, we consider the scenario where both
sensor rules can be jointly optimized. In this case, the opti-
mal fusion rule is the LRT of U1, X2, X3 which in turn is a
function of p(U1, X2, X3|H) and eventually, γo1 . As a result,
γo1 is therefore more complicated than a simple form of X1

or X1, X2. Furthermore, there may exist a set of suboptimal
rules which are locally optimal but not global optimal.

To shed some light into this somewhat complicated opti-
mization problem, we consider the classic problem of detect-
ing a fixed and known signal in an additive Gaussian noise
such that X1, X2, X3 are conditionally independent and,

Xi ∼ N (siH, 1), (6)

where si > 0 is the signal strength, i = 1, 2, 3.
In general, the sensor 2 decision rule is a monotonic in-

creasing function ofU1 such thatP (U0 = 1|U1 = 1, x2, H)−
P (U0 = 1|U1 = 0, x2, H) > 0. In other words, sending
U1 = 1 results a higher chance of deciding on H = 1 by
sensor 2 than sending U1 = 0. Define the “extra” term in (5)
as exp(g(x2)), and ϕ = ln π0

π1
as the log ratio of the two prior

probabilities.
Taking the logarithm of (5) and simplifying, we have the

optimal sensor 1’s rule for a fixed sensor 2 rule is given by

γo1 = P (U1 = 1|x1, x2)

=

{
1, x1 >

s22+s
2
1

2s1
+ ϕ

s1
− s2

s1
x2 − g(x2)

s1
;

0, otherwise.
(8)

As a result, we have

P (U1 = 1|x2, H) ={
Q(

s22−s
2
1

2s1
+ ϕ

s1
− s2

s1
x2 − g(x2)

s1
), H = 1;

Q(
s22+s

2
1

2s1
+ ϕ

s1
− s2

s1
x2 − g(x2)

s1
), otherwise.

(9)

where Q(·) is the standard Gaussian compliment distribution
function.

At sensor 2, the likelihood ratio is

p(U1, X2, X3|H = 1)

p(U1, X2, X3|H = 0)
=
p(U1|X2, H = 1)

p(U1|X2, H = 0)

p(X2, X3|H = 1)

p(X2, X3|H = 1)
.

(10)
The optimal test is the well known LRT such that

U0 =

{
1, x3 >

s22+s
2
3

2s3
+ ϕ

s3
−

ln
p(U1|X2,H=1)

p(U1|X2,H=0)

s3
− s2

s3
x2;

0, otherwise.
(11)

Therefore, given U1, X2, H at sensor 2, the final detection
performance is

P (U0 = 1|U1, x2, H) = Q(
s22−s

2
3

2s3
+ ϕ

s3
−

ln
p(U1|X2,H=1)

p(U1|X2,H=0)

s3
− s2

s3
x2), H = 1;

Q(
s22+s

2
3

2s3
+ ϕ

s3
−

ln
p(U1|X2,H=1)

p(U1|X2,H=0)

s3
− s2

s3
x2), H = 0.

(12)

Plugging equations (9) and (12) to (7), we obtain a func-
tion of g(x2) to be solved. Although an analytical solution is
not easy to obtain, this function is still relatively simple to be
solved with numerical tools.

4. PERFORMANCE EVALUATION

In this section, the performance of the scheme employing the
optimal sensor 1 rule (i.e., γo1 given in (8)) and the fusion
rule given in (12) is compared with the other two simplified
suboptimal schemes (mentioned in Section 2), which are as
defined below.

Scheme A: In this scheme, sensor 1 completely ignores
X2 as it is available at sensor 2 already. Therefore, sensor 1
makes decision U1 by performing LRT on X1 (equivalent to
quantizeX1). Sensor 2 takes the optimal LRT on U1, X2, X3.
As a result, the likelihood function of Sensor 2 can be written
as P (U1|H)p(X2|H)p(X3|H). Notably, in Scheme A, we
have sensor 1’s decision rule given by

γA1 = P (U1 = 1|x1, x2) =
{

1, x1 >
ϕ
s1

+ s1
2 ;

0, otherwise.
(13)

Accordingly, when comparing with (8), the corresponding
g(x2) for Scheme A is g(x2) =

s22
2 s

2 − s2x2.
Scheme B: In this scheme, sensor 1 ignores the fact that

Sensor 2 (the fusion center) also has the common observa-
tion X2 and makes decision U1 based on the optimal LRT of
(X1, X2). Same as the other cases, at the fusion center, sensor
2 performs optimal LRT based on U1, X1, X2. The likelihood
function can be written as P (u1|X2, H)P (X2|H)p(X3|H).
Notably, in Scheme B, we have sensor 1’s decision rule given
by

γB1 = P (U1 = 1|x1, x2) =

{
1, x1 >

ϕ
s1

+
s22+s

2
1

2s1
− s2

s1
x2;

0, otherwise.
(14)

Accordingly, when comparing with (8), the corresponding
g(x2) is always 0 for Scheme B.

For comparison purposes, the performance loss of each
scheme with respective to a benchmark scheme is illustrated.
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g(x2) ≡ ln
P (U0 = 1|U1 = 1, x2, H = 1)− P (U0 = 1|U1 = 0, x2, H = 1)

P (U0 = 1|U1 = 1, x2, H = 0)− P (U0 = 1|U1 = 0, x2, H = 0)
. (7)
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Fig. 1. Performance loss ratios of optimal scheme, Scheme A,
and Scheme B for case in which c1 = c2 = 1 and c3 = 0.5.

The benchmark scheme is the centralized test in which all the
observation X1, X2, X3 are assumed to be available to sensor
2, or equivalently, the bandwidth between sensors 1 and 2 are
unlimited. The sensor makes a decision using LRT based on
X1, X2, X3, which is given by

U0 =

{
1, s1x1 + s2x2 + s3x3 > ϕ+

s21+s
2
2+s

2
3

2 ;
0, otherwise.

(15)

As a result, the probability of error of the centralized test
(Pe,cen) is given by

Pe,cen =

π1

(
1−Q

(
ϕ√

s21 + s22 + s23
−
√
s21 + s22 + s23

2

))

+ π0Q

(
ϕ√

s21 + s22 + s23
+

√
s21 + s22 + s23

2

)
.

Given the probability of error of the centralized test (Pe,cen),
we define the performance loss ratio of each scheme as (Pe−
Pe,cen)/Pe,cen, where Pe is the error probability of Scheme
A, Scheme B, or the optimal Scheme.

In evaluating the performance, we set si given in (6) as
si = cis and define signal-to-noise ratio (SNR) as s2 (because
of unit variance given in (6)). Figure 4 plots the performance
loss ratios of the optimal scheme, Scheme A, and Scheme B
for the case in which c1 = c2 = 1 and c3 = 0.5. As can be
seen, the optimal scheme outperforms the other two schemes.
In addition, it can be observed that Scheme B yields a near-
optimal performance when the SNR of X3 is low compared
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Fig. 2. Performance loss ratios of optimal scheme, Scheme A,
and Scheme B for case in which c1 = c3 = 0.5 and c2 = 1.

to others. Figure 4 plots the performance loss ratios of the
optimal scheme, Scheme A, and Scheme B for the case in
which c1 = c3 = 0.5 and c2 = 1. The optimal scheme again
outperforms the other two schemes. On the other hand, it can
be observed that Scheme A, beside of its simplicity, appears
to be near-optimal when the SNR of X2 is low.

5. CONCLUSION

We have studied a distributed detection problem in which
the participating sensors share some common information.
Specifically, we have investigated a 2-sensor tandem network
with sensor 1 sending a one-bit decision to sensor 2 where the
final decision is made. Along with their common observation
X2, sensor 1 and 2 possess their conditionally independent
measurements X1 and X3, respectively. We have derived the
necessary condition for the optimal sensor decision rules for
both sensors in the considered tandem network. Finally, We
have compared the derived optimal rules with two suboptimal
rules for the case of detecting a constant DC signal in Gaus-
sian noises with potentially different SNRs, and the obtained
results confirm the optimality of the derived optimal rules.
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