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ABSTRACT

 

 

We develop a gradient-descent distributed adaptive 

estimation strategy that compensates for error in both input 

and output data. To this end, we utilize the concepts of total 

least-squares estimation and gradient-descent optimization 

in conjunction with a recently-proposed framework for 

diffusion adaptation over networks. The proposed strategy 

does not require any prior knowledge about the noise 

variances and has a computational complexity comparable 

to the diffusion least mean square (DLMS) strategy. 

Simulation results demonstrate that the proposed strategy 

provides significantly improved estimation performance 

compared with the DLMS and bias-compensated DLMS 

(BC-DLMS) strategies when both the input and output 

signals are noisy. 

 

Index Terms—adaptive networks, diffusion adaptation, 

distributed adaptive filtering, gradient-descent optimization, 

total least-squares. 

 

1. INTRODUCTION 

 

Several types of self-organized systems can be modeled 

using adaptive networks that perform decentralized 

information processing and optimization. A group of 

spatially-dispersed nodes with processing and learning 

capabilities typically forms an adaptive network. In such 

networks, the nodes are interconnected within a static or 

dynamic topology and cooperate with each other via local 

information exchanges to perform real-time distributed 

estimation. The nodes can adapt to varying statistical and 

topographical conditions of the data and the network thanks 

to the constant dissemination of information across the 

network [1]-[3]. 

A considerable body of literature on distributed adaptive 

estimation over networks has accumulated in recent years 

(see, e.g., [3]-[25] and the references therein). Of particular 
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interest are the diffusion adaptation strategies that are 

especially well-suited for applications where all the nodes in 

the network have a common objective [4]-[12]. Diffusion 

strategies are powerful techniques that allow adaptive 

cooperation and learning over networks by relying merely 

on local interactions and in-network processing. They are 

also superior to the incremental [13]-[16] and consensus 

strategies [17]-[25] in various aspects [1], [26]. 

Prominent among the diffusion strategies is the diffusion 

least mean square (DLMS) strategy that offers a simple but 

effective way to implement distributed adaptive filtering 

over networks [11]. However, the DLMS strategy assumes 

that the input data at all nodes are observed accurately and 

only the filter outputs of the nodes are corrupted by noise. 

This assumption is often unrealistic since several types of 

error, e.g., sampling, quantization, modeling, and instrument 

errors, can contribute to the inaccuracy of the observed input 

data. Therefore, in practice, the DLMS strategy may have a 

poor estimation performance because of failing to account 

for the error in the input data. 

Bias compensation is one possible approach to enhance 

the performance of the DLMS strategy at the presence of 

input data noise [5], [7]. However, this approach requires 

the exact knowledge of noise variances at the input of all the 

nodes. Such information is usually hard to obtain 

beforehand and needs to be estimated during the adaptation 

process. This in turn imposes processing overhead and 

inaccuracy. 

Total least-squares (TLS) is a fitting method that 

improves the accuracy of the least-squares estimation 

techniques when both the input and output data are subject 

to observational error. TLS minimizes the perturbation in 

the input and output data that is required to fit the input data 

to the output observations [27]-[29]. Two distributed TLS 

algorithms for optimization over networks, which use 

eigendecomposition of the augmented data covariance 

matrix and the inverse power iterations (IPI), have been 

proposed in [17] and [18], respectively. These algorithms 

are consensus-based and consequently subject to the 

limitations of this category. In addition, they have 

computational complexities of  (  ) and  (  ), 

respectively, where   is the system order. 
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In this paper, we propose a diffusion-based gradient-

descent TLS strategy for distributed adaptive estimation. For 

this purpose, we devise a network TLS cost function that is 

the sum of individual node cost functions. Then, employing 

the general framework for diffusion strategies over adaptive 

networks developed in [4], we minimize the network cost 

function by means of stochastic gradient-descent 

optimization in a distributed fashion over the network. 

Unlike the bias-compensated DLMS (BC-DLMS) strategy, 

the proposed diffusion strategy does not require any 

knowledge of the noise variances. Moreover, similar to 

DLMS and BC-DLMS, the computational complexity of the 

new strategy is  ( ). Simulation results show that it 

outperforms both DLMS and BC-DLMS. 

 

2. PROPOSED STRATEGY 

 

Let us consider a connected network with   nodes, each 

having a linear system described by 

 ̃   
    ̃   ,           

where        is the vector of network-wide unknown and 

sought-after parameters,  ̃         and  ̃      are the 

input vector and the output signal of the node number 

            at time index    , respectively, and 

superscript   denotes matrix/vector transposition. Suppose 

that both the input and output are observed in noise as 

      ̃         and       ̃         where      

      (     
   ) and         (    

 ) are the 

corresponding noises with    being the     all-zero vector 

and    the     identity matrix. The noises are independent 

of each other and the input data. 

If all the data is collected and processed in a fusion 

center, a centralized adaptive filtering process can iteratively 

estimate   exploiting the data available across the network 

up to the current time. The tap weights of this adaptive 

filter, denoted by        , are taken as the estimate at 

iteration  . We wish to compute    such that it fits the 

input data to the output data by incurring minimum 

perturbation. This amounts to determining the minimum 

input data perturbation matrixes        , the minimum 

output data perturbation vectors        , and the filter 

weights    that satisfy 

 (  
    )    

 
    (1) 

where 

   [                ], 

   [                ]
 
. 

We may cast this fitting problem as 

 
[     ]        

   
‖[   ]‖  

subject to              
     

(2) 

where ‖ ‖  denotes the Frobenius norm. Once    and    

are found from (2), any    satisfying (1) is the desired 

solution. Using the singular value decomposition (SVD) of 

the augmented data matrix [  
    ], the total least-squares 

(TLS) solution is given by 

     
      

      

 (3) 

where    is the right singular vector corresponding to the 

smallest singular value of [  
    ] and        and        

denote the   uppermost elements and the (   )th element 

of   , respectively [29]. 

The solution of (3) is optimal. However, obtaining it 

comes at the expense of performing the SVD of a   
(   ) matrix at each iteration. In the light of the analysis 

of [29], a computationally more efficient alternative 

approach would be to minimize the following cost function 

over       : 

     ( )   [
‖[  
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‖[
 
  

]‖
 ] (4) 

where ‖ ‖ denotes the Euclidean norm and  [ ] is the 

expectation operator. Observe that     ( ) is in fact the 

Rayleigh quotient of 

   {[
  

  
 ] [  

    ]} 

with argument [     ]  and reaches its minimum value 

     (the smallest eigenvalue of  ) when [     ]  is the 

eigenvector corresponding to      [30]. 

We may rewrite (4) as 
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where   ( ) can be considered as the individual cost 

function associated with node  . 

It is known that the critical points of the Rayleigh 

quotient cost function,     ( ), are the eigenvectors of   

and the critical values of     ( ) are the eigenvalues of  . 

Moreover,      is the only stable critical value (local and 

global minimum) of     ( ). As a result,   is the unique 

minimizer of      ( ) and the global minimum of      ( ) 

can be reached using the gradient-descent method from any 

initial point given the choice of an appropriate step-size 

[31]-[33]. 

The gradient of the individual cost function for node   is 

calculated as 

5309
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Subsequently, a centralized gradient-descent total least-

squares (GDTLS) estimate of the network parameters can be 

iteratively achieved as 
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where 
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and     is a step-size parameter. 

As for the in-network processing contrasted with the 

centralized processing, the nodes cooperate with each other 

to perform a distributed estimation over the network and lay 

off the fusion center. In this way, each node makes its own 

estimation of the unknown parameters, namely     , and 

shares its data with its neighbours. Using the general 

framework for diffusion-based distributed adaptive 

optimization, introduced in [4], an adapt-then-combine 

(ATC) diffusion strategy utilizing the gradient-descent TLS 

approach can be formulated as 
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                      ∑           (                 )    
 

     ∑             
  

where 

       
         

       

‖      ‖
 
  

  

     are the step-size parameters, and        and 

       are the combination parameters that satisfy 

            if     ,          , 

∑     
 
     ,          , 

∑     
 
     ,          , 

and 

∑     
 
     ,          . 

The set    contains   and indexes of the nodes that are 

directly connected to node   and can exchange information 

with it. 

The above algorithm has two update equations for 

adaptation and combination of the estimates. At each 

iteration, all the nodes update their estimates using the data 

available within their neighborhoods and store them in the 

intermediate variables,     . Then, they combine the 

intermediate estimates available within their neighborhoods 

to obtain the new estimates,     . Obviously, each node 

shares its input-output data, i.e.,      and     , as well as its 

intermediate estimate,     , with its neighbors. By swapping 

the order of the adaptation and combination steps, a 

combine-then-adapt (CTA) version can also be expressed as 

       ∑               
  

              ∑           (                 )    
. 

We call the proposed strategy diffusion gradient-descent 

total least squares (D-GDTLS). 

 

3. SIMULATIONS 

 

We consider a distributed errors-in-variables system 

identification problem where the unknown system is an 

arbitrary finite-impulse-response filter of order     and 

unit energy. The identification task is carried out by a 

connected network consisting of      nodes where each 

node is linked to three other nodes in average. The input 

data vectors of the nodes are zero-mean Gaussian and 

independent in time and space. The misalignment, as the 

estimation performance metric, is defined as  [‖    ‖
 ] 

and evaluated by ensemble-averaging over     independent 

runs. The steady-state misalignment is obtained by 

averaging over     steady-state values. The expected 

squared norm of the input data vectors as well as the 

variance of the input and output noises at each node are 

shown in Fig. 1. We use metropolis weights for the 

adaptation phase and simple averaging weights for the 

combination phase [11]. We also initialize the estimates of 

all the algorithms to all-zero vectors and tune to step-sizes 

Fig. 1.  The expected squared norm of the input data vectors together 

with the variances of the input and output noises at each node. 
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such that all the algorithms have almost the same initial 

convergence rate. 

In Figs. 2 and 3, we compare the performance of the ATC 

and CTA implementations of the proposed strategy with the 

centralized and non-cooperative implementations of the 

GDTLS algorithm. In the non-cooperative case, each node 

updates its estimate using the GDTLS algorithm without 

exchanging any information with its neighbors. In Figs. 4 

and 5, we compare the performance of the ATC 

implementations of the D-GDTLS, DLMS, and BC-DLMS 

strategies. In Figs. 2 and 4, we plot the misalignments 

averaged over all the nodes against the iteration number and 

in Figs. 3 and 5, we plot the node-specific steady-state 

misalignments versus the node number. 

The simulation results show that the performance of the 

proposed strategy is superior to those of its contenders, the 

DLMS and BC-DLMS strategies. Moreover, its ATC 

implementation outperforms the CTA implementation, 

which is consistent with the previous predictions and 

observations [1], [4], [11]. 

 

 
4. CONCLUSION 

 

We have developed a new diffusion-based distributed 

adaptive filtering and estimation strategy by defining a total 

least-squares network cost function that is the sum of 

individual node-specific cost functions and minimizing it 

over the network and in a cooperative manner via the 

gradient-descent method. The proposed strategy has the 

same order of complexity as the diffusion least mean square 

(DLMS) and bias-compensated DLMS (BC-DLMS) 

strategies and, as attested to by the simulation results, 

outperforms these strategies when both the input and output 

data are observed in noise. Unlike the BC-DLMS strategy, 

the new strategy does not require any prior knowledge of the 

noise variances. 
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