
COOPERATIVE SPARSITY PATTERN RECOVERY IN DISTRIBUTED NETWORKS VIA
DISTRIBUTED-OMP

Thakshila Wimalajeewa and Pramod K. Varshney

Department of Electrical Engineering and Computer Science
Syracuse University, Syracuse, NY 13244

Email: twwewelw@syr.edu, varshney@syr.edu

ABSTRACT
In this paper, we address the problem of sparsity pattern recovery of
a sparse signal with multiple measurement data in a distributed net-
work. We consider that each node in the network makes measure-
ments via random projections regarding the same sparse signal. We
propose a distributed greedy algorithm based on Orthogonal Match-
ing Pursuit (OMP) in which the locations of non zero coefficients of
the sparse signal are estimated iteratively while performing fusion
of estimates at distributed nodes. In the proposed distributed frame-
work, each node has to perform less number of iterations of OMP
compared to the sparsity index of the sparse signal. With each node
having a very small number of compressive measurements, a signif-
icant performance gain in sparsity pattern detection is achieved via
the proposed collaborative scheme compared to the case where each
node estimates the sparsity pattern independently and then fusion is
performed to get a global estimate. We further extend the algorithm
to a binary hypothesis testing framework, where the algorithm first
detects the presence of a sparse signal collaborating among nodes
with a fewer number of iterations of OMP and then increases the
number of iterations to estimate the sparsity pattern only if the sig-
nal is detected.

Index Terms— Compressive sensing, Sparsity pattern detec-
tion, multiple measurement vectors, distributed networks

1. INTRODUCTION

In the Compressive Sensing (CS) framework, a small collection of
linear random projections of a sparse signal contains sufficient infor-
mation for complete signal recovery [1–3]. There is a considerable
amount of work on the development of computationally efficient and
tractable algorithms to recover sparse signals from CS based mea-
surements obtained via random projections, for example in [4–12].
There are certain signal processing applications where complete sig-
nal recovery is not necessary. For example, in applications such as
source localization in sensor networks [13, 14], estimation of fre-
quency band locations in cognitive radio networks [15], localization
of neural electrical activities from a huge number of potential lo-
cations in magnetoencephalography (MEG) and electroencephalog-
raphy (EEG) for medical imaging applications [16–18], sparse ap-
proximation [19], subset selection in linear regression [20, 21], and
signal denoising [22], it is only necessary to estimate the locations
of the significant coefficients of a sparse signal. Further, in the CS
framework, once the the locations of non zero coefficients are iden-
tified, the signal can be estimated using standard techniques. Thus,
the problem of support identification of sparse signals is important
with many applications.

The problem of sparsity pattern detection has been addressed by
several authors in the CS literature [23–31]. These studies mostly fo-
cus on single measurement vectors. In distributed networks includ-
ing sensor and cooperative cognitive radio networks, multiple mea-
surements appear quite naturally since multiple nodes make observa-
tions regarding the same phenomenon of interest (PoI). Extensions
of standard sparse signal recovery techniques for multiple measure-
ment vectors are considered in [32, 33] assuming that the multiple

measurements are available at a single location to perform the de-
sired task. In such centralized settings, each node in the network has
to transmit its observations along with the elements of the measure-
ment matrix to solve the sparse signal recovery problem. However,
the trade-off between the resource constraints (e.g. node power and
communication bandwidth) and the achievable performance gain is
a core issue to be addressed in many practical distributed networks.
The problem of distributed sparsity pattern recovery is considered re-
cently in the context of cognitive radio networks in [34, 35]. There,
decentralized consensus based algorithms for support recovery of
sparse signals were proposed when each cognitive radio makes CS
based measurements.

This paper focuses on further reducing the computational and
communication burden at individual nodes while performing spar-
sity pattern recovery distributively. In the proposed distributed
scheme, each node finds an estimate of the sparsity pattern by proper
collaboration and fusion. More specifically, we develop a greedy
algorithm based on Orthogonal Matching Pursuit (OMP) where the
indices of the sparse support are iteratively identified while fusing
the estimated indices at distributed nodes at each iteration. We show
that, in the proposed distributed algorithm, each node has to perform
less number of iterations of the greedy algorithm compared to the
sparsity index of the sparse signal to reliably estimate the sparsity
pattern (in the standard OMP algorithm, at least K iterations are
required for sparsity pattern recovery where K is the sparsity index
of the sparse signal). Moreover, in the proposed algorithm, each
node transmits only one index at each iteration to perform fusion.
Thus, each node has to communicate less information while esti-
mating the sparsity pattern distributively compared to the schemes
proposed in [34, 35]. Further, we extend the results and develop a
joint algorithm to both detect the sparse signal and to perform the
sparsity pattern recovery only if the sparse signal is detected.

2. PROBLEM FORMULATION ANDMOTIVATION

Consider a distributed network withL distributed nodes. We assume
that each node obtains aM(< N)-length measurement vector yl via
linear random projections. The measurement vector at the l-th node
is given by,

yl = Als+ vl; (1)

for l = 0, 1, · · · , L − 1 where s is the N × 1 sparse signal vector
andAl is theM×N random projection matrix at the l-th node. The
noise vector vl at the l-th node is assumed to be iid Gaussian with
zero mean vector and the covariance matrix σ2

vIM where IM is the
M ×M identity matrix. When the signal s is sparse in an orthonor-
mal basis Ψ such that s = Ψβ where β contains only K << N
number of significant coefficients, it has been shown that the ran-
domized lower dimensional projections of the form (1) can capture
significant information of the sparse signal s [1–3].

Let U be the set which contains the indices of the support of
the sparse coefficient vector β which is defined as, U := {i ∈
{1, 2, · · · , N} | β(i) �= 0} where β(i) is the i-th element of β
for i = 0, 1, · · · , N − 1. Then we have K = n(U) where n(S)
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denotes the cardinality of the set S . Further, let b be a N -length
vector which contains binary elements: i.e.

b(i) =

{
1 ifβ(i) �= 0
0 otherwise

for i = 0, 1, · · · , N−1 and b̂ be the estimated binary support vector.
Sparsity pattern recovery is to estimate the set U (or the vec-

tor b) based on the observation model (1). With a single measure-
ment vector, sparsity pattern recovery can be performed via a CS
reconstruction algorithm such as regularized least square algorithm
(Lasso) [1, 36] or OMP [8]. Although Lasso provides with more
promising results in the context of accuracy, its computational com-
plexity is higher than that with greedy techniques such as OMP. It
has been shown in [8, 37] that OMP requires approximately M ≥
(1 + ε)4K logN , ε > 0 measurements for reliable sparsity pattern
recovery while Lasso scales as 2K log(N −K)+K +1 [38] when
the measurement SNR is large. Further, it was shown in [37] that for
sparsity pattern recovery with large Gaussian measurement matrices
in high SNR, lasso and OMP have almost identical performance.

When multiple measurement vectors as in (1) are collected at
a centralized location, the support of the sparse signal can be es-
timated, for example, by solving the simultaneous OMP algorithm
as presented in [32] [33]. To implement such centralized sparsity
pattern recovery algorithm with multiple measurement data, it is
required that each node transmits its M -length observation vector
along with the elements of the measurement matrix to a central fu-
sion center. Since transmitting all the information to a fusion center
is not desirable in power and bandwidth constrained communica-
tion networks, we consider a distributed scheme in which, sparsity
pattern estimation is performed via collaboration among nodes with
less communication and with each node estimating the sparsity pat-
tern. In [34, 35], several consensus based distributed schemes are
proposed to estimate the support of sparse signals based on Lasso.
These schemes estimate the full support set at each node and then
perform fusion via several collaboration schemes. However, due to
computational complexity, performing Lasso at power constrained
sensor nodes may not be desirable. Our focus in this paper is on
proposing a distributed greedy algorithm for sparsity pattern recov-
ery with less communication burden compared to consensus based
approaches as proposed in [34, 35].

3. DISTRIBUTED SPARSITY PATTERN RECOVERYWITH
MULTIPLEMEASUREMENT VECTORS

OMP is a greedy technique in which at each iteration, the location
of one non zero coefficient of the signal (or the index of a column of
Θ = AΨ that participates in the measurement vector y) is identified.
More specifically, at each iteration, the algorithm picks the column
ofΘ which is most correlated with the remaining part of y. Then the
selected column’s contribution is subtracted from y and iterations on
the residual are carried out. The standard OMP algorithm for spar-
sity pattern detection with single measurement vector is presented in
Algorithm 1. If we consider that the standard OMP is performed at
one sensor node as stated in Algorithm 1, at each iteration, there are
N − K possible incorrect indices that can be selected. The prob-
ability of selecting an incorrect index at each iteration increases as
the number of CS measurements at each node (M ) decreases. The
goal of the proposed algorithm is to reduce the probability that OMP
selects an incorrect index as the true location of non zero entries via
collaboration and fusion.

3.1. Distributed and collaborative OMP for sparse support esti-
mation

DefineMl to be the set containing the neighboring nodes of the l-th
node (including itself). As defined in Section 2, let U be the support
set which contains the indices of non zero coefficients of the sparse

Algorithm 1 Standard OMP for sparsity pattern estimation at the
l-th node
1. Initialize t = 1, Ûl(0) = ∅, residual vector rl,0 = yl

2. Find the index λl(t) such that λl(t) =
arg max
ω=1,··· ,N

|〈rl,t−1, θl,ω〉|

3. Set Ûl(t) = Ûl(t− 1) ∪ {λl(t)}

4. Compute the projection operator Pl(t) =

Θl(Ûl(t))
(
Θl(Ûl(t))

TΘl(Ûl(t))
)−1

Θl(Ûl(t))
T . Up-

date the residual vector: rl,t = (I−Pl(t))yl

5. Increment t = t + 1 and go to step 2 if t ≤ K, otherwise,
stop and set Ûl = Ûl(t)

signal and Ûl be the estimated support set at the l-th node. Further,
let Θl = AlΨ and θl,i be the i-th column of the matrix Θl. Θl(A)
denotes the submatrix ofΘl which has columns ofΘl corresponding
to the elements in the setA for A ⊂ {0, 1, · · · , N − 1}. |.| denotes
the absolute value while ||.||p denotes the lp norm. Further, n(S)
denotes the cardinality of the set S as defined before.

The proposed distributed and collaborative OMP (DC-OMP) al-
gorithm is stated in Algorithm 2. Once the l-th node finds an index
λl(t) (which corresponds to the column that is most correlated with
the remaining part of yl) at t-th iteration by performing step 2 in
Algorithm 2, it is exchanged among the neighborhoodMl. Subse-
quently, each node will have the estimated index at every node in
its neighborhood at t-th iteration. By fusion, each node selects a set
of indices (from n(Ml) number of indices) such that most of the
nodes agree upon (more details of this fusion are provided in Sub-
section 3.1.1). Note that, in this step several indices can be selected
and thus, more than one index of the true support can be estimated at
a given iteration. Thus, the number of iterations required to estimate
the support at each node can be less than the sparsity indexK.

Algorithm 2 Distributed OMP for sparsity pattern estimation
At l-th node:

1. Initialize t = 1, Ûl(0) = ∅, residual vector rl,0 = yl

2. Find the index λl(t) such that λl(t) =
arg max
ω=1,··· ,N

|〈rl,t−1, θl,ω〉|

3. Update the index set λ∗l (t) via local communication: λ∗l (t) =
fl(λl(t), {λi(t)}, i ∈ Ml), as discussed in subsection 3.1.1

4. Set Ûl(t) = Ûl(t− 1) ∪ {λ∗l (t)} and lt = n(Ûl(t))

5. Compute the projection operator Pl(t) =

Θl(Ûl(t))
(
Θl(Ûl(t))

TΘl(Ûl(t))
)−1

Θl(Ûl(t))
T . Up-

date the residual vector: rl,t = (I−Pl(t))yl

6. Increment t = t + 1 and go to step 2 if lt ≤ K, otherwise,
stop and set Ûl = Ûl(t)

3.1.1. Performing step 3 in Algorithm 2

To perform step 3 in the Algorithm 2 we propose the following pro-
cedure.
Case I: Consider the case where the l-th node can broadcast its esti-
mated index of the sparse support at each iteration to the rest of the
nodes in the network. i.e.Ml = M̄ where M̄ contains the indices
of all the nodes in the network. This is a reasonable assumption when
there are only a small number of nodes in the network (e.g. cognitive
radio networks with 5 − 10 cognitive radios). During t-th iteration,

5289



the l-th node broadcasts λl(t). Consequently, the l-th node receives
the estimates λi(t)’s for i ∈ M̄ from the whole network. Further,
let c(t) be a L-length vector that contains all the indices estimated
at L nodes from step 2 in Algorithm 2 during the t-th iteration (i.e.
values of λi(t)’s for i = 0, 1, · · · , L− 1). At t-th iteration, λ∗l (t) is
computed as follows: Check whether there are indices in c(t) with
more than one occurrences.

• If yes, such indices are put in the set λ∗l (t) (such that λ∗l (t) =
{set of indices in c(t) which occur more than once}.

• If no, (i.e. there is no index obtained from step 2 such that any
two or more nodes agree with, so that all L indices in c(t) are
distinct), then select one index from c(t) randomly and put
in λ∗l (t). In this case, to avoid the same index being selected
at subsequent iterations, we force all nodes to use the same
index.

It is noted that when L ≥ K,it is more likely that the vector c(t)
has at least one set of two indices with the same value, thus, λ∗l (t) is
updated appropriately most of the time. Further, since each node has
the indices received from all the other nodes in the network, every
node has the same estimate for U when the algorithm terminates.

Case II: Next, we consider the case whereMl ⊂ M̄; i.e. each
node communicates its estimated index in its neighborhood which
has fewer number of nodes compared to all the nodes in the network.
Then, similar to the case I, λ∗l (t) is found based on cl(t) as the in-
dices which have more than one occurrences from cl(t) where cl(t)
contains the indices received by the l-th node from its neighborhood
at t-th iteration. However, in this case, since l-th node does not re-
ceive the estimated indices of the sparse support from the whole net-
work at a given iteration, different nodes may agree upon different
indices. When two neighboring nodes agree upon two different in-
dices at t-th iterations, there is a possibility that one node selects the
same index at a later iteration beyond t. To avoid the l-th node select-
ing the same index twice, we perform an additional step in updating
λ∗l (t) compared to case I; i.e., to check whether λ∗l (t) determined as
in case I is in Ûl(t − 1). If λ∗l (t) ∈ Ûl(t − 1), set λ∗l (t) = λl(t),
otherwise update λ∗l (t) similar to the procedure described in Case I.

4. SPARSE SIGNAL DETECTION AND SPARSITY
PATTERN ESTIMATION

Next, we consider the case where it is required to detect whether
the sparse signal is present and estimate the sparsity pattern only if
the signal is present. We consider the following binary hypothesis
testing problem,

H1 : yl = Als+ vl , H0 : yl = vl. (2)

for l = 0, 1, · · · , L − 1 and the sparse signal is present under hy-
pothesisH1. In the following, we extend the collaborative algorithm
discussed in Section 3.1 to first detect the sparse signal and then to
estimate the sparsity pattern without ever reconstructing the signal.
Further, we assume that L ≥ K.

The proposed algorithm is presented in Algorithm 3. If the sig-
nal is not present in the model (2), it is very unlikely that two nodes
in the network select the same index of the support set at any given
iteration based on the step 2 in the OMP algorithm presented in Al-
gorithm 2. When the signal is present (i.e. hypothesis H1 is true),
the probability that two nodes select the same index at each iteration
is higher especially when L ≥ K. The main difference between Al-
gorithm 3 and Algorithm 2 is the steps 4 and 5 in Algorithm 3 which
will be discussed next.

4.1. Steps 4 and 5 in Algorithm 3

Steps 4 and 5 in Algorithm 3 are performed as follows. At t-th itera-
tion, cl(t) contains all the indices received by the l-th node from its
neighborhood. The function unique(cl(t)) gives the number of dis-
tinct indices in c(t). If all the indices in cl(t) are different from each

Algorithm 3 Distributed OMP for sparse signal detection and spar-
sity pattern estimation
At l-th node:

1. Initialize t = 1, Ûl(0) = ∅, residual vector rl,0 = yl,
iindex = 0

2. Find the index λl(t) such that λl(t) =
arg max
ω=1,··· ,N

|〈rl,t−1, θl,ω〉|

3. Update the estimated index set λl(t) via local communica-
tion: λ∗l (t) = fl(λl(t), {λi(t)}, i ∈ Ml), as discussed in
subsection 3.1.1

4. Update iindex (as discussed in Subsection 4.1):
- if unique(cl(t)) = n(Ml), iindex = iindex + 0
- else (unique(cl(t)) < n(Ml)), iindex = iindex+ρ(cl(t))

5. Perform signal detection decision when t = K0

-If t = K0 and iindex(t) ≥ I0, decide H1 and go to step 6.
Avoid steps 4 and 5 in subsequent iterations
-If t = K0 and iindex(t) < I0 decide H0, set Ûl(t) = ∅ and
go to step 9

6. Set Ûl(t) = Ûl(t− 1) ∪ {λ∗l (t)}, and lt = n(Ûl(t))

7. Compute the projection operator Pl(t) =

Θl(Ûl(t))
(
Θl(Ûl(t))

TΘl(Ûl(t))
)−1

Θl(Ûl(t))
T . Up-

date the residual vector: rl,t = (I−Pl(t))yl

8. Increment t = t+ 1 and go to step 2 if lt < K,

9. set Ûl = Ûl(t)

other, unique(cl(t)) equals to the number of nodes in the neighbor-
hood of the l-th node including itself. If there are any two indices in
cl(t) with the same value, we set the value of ρ(cl(t)) as the number
of such indices. After performingK0 (which is less thanK) number
of iterations, if iindex in step 4 in Algorithm 3 is very small (less
than I0 where I0 � K), the algorithm decides that no sparse sig-
nal is present and terminate the process resulting in the null set as
the estimated support set. If iindex ≥ I0, it decides that the sparse
signal is present and continues estimating the support set similar to
Algorithm 2.

5. SIMULATION RESULTS
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Fig. 1. Performance of the sparsity pattern recovery with distributed
OMP algorithm 2: (a) the probability of correctly recovering the
sparse support (PD = Pr(b̂ = b)) vs M/N (b) the percentage
of the support correctly recovered vs M/N ; N = 256, K = 10,
L = 10, γ̄ =

||s||2
2

Nσ2
v

= 17.3227dB

To compare the performance of the proposed Algorithm 2 with
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other approaches, we consider two existing benchmark cases. (i).
Distributed OMP with no collaboration: in this case, each node per-
forms standard OMP in Algorithm 1 independently to obtain the
support set estimate Ûl. To fuse the estimated support sets, Ûl’s,
at individual nodes, each node transmits indices in Ûl to a fusion
center and performs a majority rule based fusion scheme to obtain a
global estimate Û . (ii). Simultaneous OMP (S-OMP) [32]: S-OMP
algorithm is carried out using all the raw observations (as well as the
projection matrixAl) at the fusion center.

In Figures 1-3 we assume thatMl = M̄ as considered in case
I in Subsection 3.1.1. Then the estimated support set at each node
based on Algorithm 2 is the same. Entries of each projection matrix
Al for l = 0, 1, · · · , L−1 are drawn from a Gaussian ensemble with
mean zero and variance 1

N
. In Fig. 1, by performing 104 runs and av-

eraging over 20 trials, we plot the probability of correctly recovering
the full support set, PD = Pr(b̂ = b) (a) and the percentage of the
support set that is estimated correctly (b) vs M/N where M is the
number of compressive measurements at each node. It can be seen
from Fig. 1 that, at relatively small values of M/N , the proposed
algorithm outperforms D-OMP with no collaboration. In resource
constrained distributed networks, especially in sensor networks, it is
desirable to perform the desired task by employing less measurement
data (i.e. with smallM ) at each node distributing the computational
complexity among nodes to save the overall node power, and the
proposed algorithm is promising in this case compared to perform-
ing OMP at each independently (based on Algorithm 1) and then
fusion.

However, asM/N increases, Pr(b̂ = b) from both Algorithms
1 and 2 converge to 1, since when the number of compressive mea-
surements at each node increases, OMP (with or without collabora-
tion) works better and recovers the sparsity pattern almost exactly
with a single measurement vector. Moreover, even for smallM/N ,
S-OMP provides a significant performance gain compared to the pro-
posed Algorithm 2. It has been shown in [8, 37] that OMP requires
approximately M ≥ (1 + ε)4K logN , ε > 0 measurements for
reliable sparsity pattern recovery in the noise free case. Thus, since
there are L nodes, this limits is achieved even with small M at a
given node. However, S-OMP requires a considerable communica-
tion overhead compared to the proposed Algorithm 2. Further, in the
proposed algorithm, each node has the same estimator at the end in
contrast to the centralized S-OMP.

In Fig. 1, we further plot the percentage of support that is cor-
rectly recovered. for example, at M

N
≈ 0.1, the proposed algorithm

correctly recovers approximately 75% of the support while D-OMP
with no collaboration recovers only about 30% of the support. To
further illustrate the efficiency of the proposed algorithm, in Fig. 2,
we plot the number of iterations of the DC-OMP algorithm that each
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Fig. 3. Performance of the sparse signal detection and sparsity pat-
tern recovery with Algorithm 3; N = 256, K = 10, L = 10,
γ̄ =

||s||2
2

Nσ2
v

= 17.3227dB; (a) Probability of detection, (b) probabil-
ity of false alarms

node has to perform in recovering the sparsity pattern. It is observed
from Fig. 2 that as M/N increases, the proposed algorithm esti-
mates the sparsity pattern reliably by executing only≈ K/2 number
of iterations at each node. WhenM/N increases, as observed from
Fig. 1, the performance of both DC-OMP and D-OMP with no col-
laboration converges to the same level. However, DC-OMP requires
very small number of iterations at each node to achieve that perfor-
mance compared to that with D-OMP with no collaboration which
requiresK number of iterations at each node irrespective of the value
ofM/N .

In Fig. 3, we illustrate the performance of Algorithm 3 for de-
tecting the sparse signal before estimating the sparsity pattern. We
plot the performance of sparse signal detection as well as the sparsity
pattern estimation in Fig. 3. For sparse signal detection, probabil-
ity of detection and the false alarm are given by P s

D = Prob(δ =
1|H1) and P s

F = Prob(δ = 1|H0), respectively where δ is the
binary detection decision. The probability of sparsity pattern detec-
tion is given by Pu

D = Prob(b̂ = b1|H1)Prob(H1) + Prob(b̂ =
b0|H0)Prob(H0), where we redefine the variables such that b1 is
the binary support of the signal s (i.e. the support under H1) while
b0 denotes the vector with all zeros (binary support underH0). With
respect to sparsity pattern recovery, the probability of false alarm
is given by Pu

F = Prob(b̂ = b1|H0)Prob(H1) + Prob(b̂ =
b0|H1)Prob(H0). In Fig. 3 we use the same values for the param-
eters N,K,L and γ̄ as used in Figures 1 and 2 and set K0 = 3 and
I0 = 2. From Fig. 3, it is seen that Algorithm 3 reliably detects the
sparse signal even with a very small value ofM/N , and the perfor-
mance of the sparsity pattern recovery after detecting the signal has
performance that is close to that when the sparsity pattern recovery
is done as in Algorithm 2 (where it is known a priori that the signal
is present).

6. CONCLUSION

We addressed the problem of recovering a common sparsity pattern
based on CS measurement vectors collected at distributed nodes in a
distributed network. A distributed greedy algorithm based on OMP
is proposed to estimate the sparsity pattern via collaboration in which
each distributed node is required to perform less number of iterations
of the greedy algorithm compared to the sparsity index. When it is
not known a priori that a sparse signal is present or not, the algo-
rithm was extended to perform detection of the sparse signal with a
fewer number of iterations before completely recovering the sparsity
pattern. The proposed algorithm is shown to have significant per-
formance gains compared to that with each node performing OMP
independently and then fusing the estimated supports to achieve a
global estimate. Complete theoretical performance and complexity
analysis of the algorithm will be considered in a future work.
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