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ABSTRACT

Online adaptive algorithms have been largely applied for re-
cursive estimation and tracking of sparse signals. In this pa-
per we propose a distributed recursive least squares (RLS) al-
gorithm incorporating an l1-norm regularization with time-
varying regularization coefficient that enables a recursive dis-
tributed solution with no losses with respect to the central-
ized solution. The method is especially useful in cooperative
sensing when the parameters to be estimated are structurally
sparse and time-varying. As well known, the l1-norm is use-
ful to recover sparsity, but it also introduces a non negligible
bias. To tackle this issue, we further apply a garotte correction
to our distributed mechanism that strongly reduces the bias.
Numerical results are included to validate the estimation and
tracking capabilities of the proposed algorithm.

Index Terms— Distributed adaptive algorithms, collabo-
rative sensing, small cell networks

1. INTRODUCTION

The deployment of small cell networks has the potential to
increase the spectral efficiency of modern cellular systems
thanks to a strong spatial reuse of radio resources. However,
the massive and possibly unplanned deployment requires a
special care in handling interference. This requires some sort
of cognition of the small cell base stations, also denoted as
small cell eNode B (SC-eNB) or Home enhanced Node B
(HeNB), in the LTE terminology. The first feature of any
cognitive approach requires sensing the spectrum before al-
locating radio resources. On the other hand, local sensing
can be impaired by shadowing effects that can deteriorate
their capabilities. For this reason, cooperative sensing tech-
niques are been studied quite extensively [1]. A character-
istic of the observed signal that can be advantageously ex-
ploited to improve the estimation accuracy is the sparsity of
the parameter vectors to be estimated. Sparsity may manifest
in the spectral domain or in the space domain, for example.
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The least absolute shrinkage and selection operator (lasso)
was proposed in [2] as an effective way to recover sparsity.
Distributed sensing algorithms incorporating the lasso con-
straint were proposed in [3] and [4], where the authors used
the alternating-direction method of multiplied (ADMM) [5]
to enable a parallel solution amenable for decentralized net-
works. A further characteristic of the interference is the in-
trinsic time-varying nature of nodes’ activity. This motivates
the use of recursive methods as more suitable to track time-
varying phenomena. For example, in [6] the authors proposed
a distributed RLS algorithm for cooperative estimation, min-
imizing an exponentially-weighted least-squares cost using
ADMM, but without sparsity constraints. An online adap-
tive estimationmerging recursive least squarewith an l1-norm
constraint was then introduced in [7], valid for a single obser-
vation node. In this paper, we propose a collaborative RLS
algorithm including an l1-norm with a time-varying penaliza-
tion coefficient that enables a distributed and recursive solu-
tion. Our formulation is also amenable to find a closed form
solution in each step of the algorithm, which is useful for real-
time implementation. Furthermore, to reduce the undesired
bias of the lasso operator, we correct the solution by incorpo-
rating a garotte thresholding function [8]. Numerical results
are included to validate the proposed approach and test its
tracking capabilities.

2. MODEL STATEMENT

Let us consider a network composed of N nodes, where the
observation xi(l) collected by node i, at time l, follows a lin-
ear model

xi(l) = aT
i (l)θ + ni(l), i = 1, . . . , N (1)

where θ is the L-size column vector to be estimated, a i(l) is
a known time-varying regression vector of size L and n i(l)
is the observation noise assumed Gaussian, with ni(l) ∼
N (0, σ2

n,i). The vector θ could represent the power trans-
mitted by a set of L nodes at a given frequency f0. In such
a case, the m-th entry aim(l) of ai(l) would be the channel
gain from transmitterm to receiver i, at time l and frequency
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f0. The goal is to estimate θ starting from the observations
xi(l) in a distributed way, i.e. without requiring the presence
of a sink node that collect all the measurements.

The vector θ is generally sparse, because the transmit-
ters are not active all the time, and time-varying. Our goal is
to estimate and track slow variations of θ over time, possi-
bly exploiting its sparsity to improve the estimation accuracy.
Sparsity can be enforced for example by assuming a Bayesian
approach incorporating some prior knowledge of θ. For ex-
ample, θ could be modeled as the outcome of a random vector
having a Laplacian prior pdf, i.e.

pΘ(θ) =
(µ

2

)L
exp(−µ‖θ‖1) (2)

with µ > 0, having denoted with ‖θ‖1 the l1 norm of θ.
Following a Bayesian approach, the estimated vector can be
found as the maximum a posteriori estimator, i.e., as the solu-
tion of the following problem

max
θ

pX/Θ(x/θ)pΘ(θ) (3)

where pX/Θ(x/θ) is the pdf of the observation vector col-
lected by all the nodes x = [x1, . . . , xN ] conditioned to θ.
Under the Gaussian assumption about the noise, taking the
log of the function in (3), the estimate θ, at time n, must be
the vector that minimizes the following function

min
θ

N∑

i=1

n∑

l=0

[xi(l) − aT
i (l)θ]2

1
2σ2

n,i

+ µ‖θ‖1. (4)

Alternatively, (4) can be seen as a least mean square approach
with an l1-norm penalty to enforce sparsity. Since we are in-
terested in tracking slow time-variations of θ, we reformulate
the problem as a recursive least-squares (RLS) approach [9],
i.e. as the minimization of the following weighted sum

min
θ

N∑

i=1

n∑

l=0

βn−l[xi(l) − aT
i (l)θ]2

1
2σ2

n,i

+ µ‖θ‖1 (5)

where β ∈ (0, 1] is a forgetting factor.
In general, the solution of the problem in (5) requires a

centralized approach because the problem cannot be decou-
pled. Nevertheless, a distributed solution can be found by
introducing the local estimates θi, for each node, and then
add the constraint that all local estimates must be equal to a
common, unknown, instrumental variable z to force all the
nodes to converge to the same value [5]. The resulting con-
strained problem can be formulated as the minimization of the
so called augmented Lagrangian

min
θi

N∑

i=1

n∑

l=0

βn−l[xi(l) − aT
i (l)θ]2

1
2σ2

n,i

+

ρn

2

N∑

i=1

‖θi − z‖2 + µ‖z‖1

s.t. θi = z (6)

where the additional term ρn

2

∑N
i=1 ‖θi − z‖2, with ρn > 0,

does not alter the solution of the original problem, but it of-
fers the following benefits: i) it makes the objective func-
tion differentiable under milder conditions than the original
Lagrangian and ii) it ensures strict convexity of the objec-
tive function. Notice that we allow the coefficient ρn of the
additional term to be possibly time-varying, for reasons that
will be clarified later on in the search for a recursive solution.
The N problems in (6) are amenable for a distributed solu-
tion. In our setting, the objective function in (6) is strongly
convex and then this problem admits a unique solution that
can be found in a distributed way using the alternating direc-
tion method of multipliers (ADMM) [5], similarly to approach
used in [10]. Using the ADMM approach, the algorithm pro-
ceeds through the following recursive updates:

θi[k + 1, n] =arg min
θi

{
N∑

i=1

n∑

l=0

βn−l[xi(l) − aT
i (l)θ]2

1
2σ2

n,i

+λT
i [k, n](θi − z[k, n]) + ρn

2 ‖θi − z[k, n]‖2
2

}
,

z[k + 1, n] =argmin
z

{
µ‖z‖1 +

ρn

2

N∑

i=1

‖θi[k + 1, n] − z‖2

−
∑N

i=1 λi[k, n]T z
}

,

λi[k + 1, n] = λi[k, n] + ρn (θi[k + 1, n] − z[k + 1, n]) ,
(7)

where θi[k, n] denotes the estimate of θi at step k and time
index n, while λi is the Lagrange multiplier vector associated
to the equality constraint θ i = z. The first and second steps
in (7) can be expressed in closed form. In particular, defining
the vector threshold function tµ(x) as the component-wise
thresholding function tµ(x) applied to each element of vector
x, with

tµ(x) =






x − µ, x > µ
0, −µ ≤ x ≤ µ
x + µ, x < −µ

(8)

the algorithm can be written as

θi[k + 1, n] =

(
n∑

l=0

βn−lai(l)aT
i (l)/σ2

n,i + ρnI

)−1

·

·
(

n∑

l=0

βn−lai(l)xi(l)/σ2
n,i − λi[k, n] + ρnz[k, n]

)

z[k + 1, n] =
1

ρnN
tµ

(
Nλ[k, n] + ρnNθ[k + 1, n]

)

λi[k + 1, n] = λi[k, n] + ρn (θi[k + 1, n] − z[k + 1, n]) .

where the notation x means average over all the nodes, i.e.
x := 1

N

∑N
i=1 xi. From this formulation we can notice that

the first and third steps can be run in parallel, while the sec-
ond step requires the computation of an average value which
can be obtained by running a distributed consensus algorithm
[11]. The only assumption necessary to guarantee the conver-
gence of the consensus algorithm is that the graph represent-
ing the links among theN cooperative nodes is connected.
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Our next goal now is to find a recursive solution. For sim-
plicity of notation, we assume σ2

n,i = 1. Let us define the
L × L matrix

Φi(n) :=
n∑

l=0

βn−lai(l)aT
i (l) + ρnI (9)

and the L-dimensional vector

vi(n) =
n∑

l=0

βn−lai(l)xi(l) (10)

where we set ρn = cβn with c > 0. Under this assumption,
the following recursive updating rules can be obtained:

Φi(n + 1) = βΦi(n) + ai(n + 1)aT
i (n + 1) (11)

vi(n + 1) = βvi(n) + ai(n + 1)xi(n + 1) (12)

so thatΦ−1
i (n + 1) can be computed recursively with a com-

plexityO(L2) by using the matrix inversion lemma as

Φ−1
i (n + 1)=1

β

[
Φ−1

i (n) − Φ−1
i (n)ai(n+1)aT

i (n+1)Φ−1
i (n)

β+aT
i (n+1)Φ−1

i (n)ai(n+1)

]
.

(13)
Note that the per-sensor computational complexity has been
significatively reduced since the matrix inversion for each it-
eration has been avoided. This recursive formulation has been
made possible by the choice ρn = cβn. However, this implies
that asymptotically, as n goes to infinity, the problem in (6)
looses the strict convexity property because the regularization
term tends to disappear. To overcome this problem, we pro-
pose a block formulation that works as follows. If we divide
the time intervals in blocks of length Ns, we can write the
running time index n as n = KNs + p, whereK = 0, 1, . . . ,
denotes the block index, whereas p = 0, . . . , Ns − 1 is the
index within the block. As a consequence, the first term in
the right side of (9) can be written as

NsK+p∑

l=0

βNsK+p−lai(l)aT
i (l)

=
NsK−1∑

l=0

βNsK+p−lai(l)aT
i (l) +

KNs+p∑

l=KNs

βKNs+p−lai(l)aT
i (l)

=
K−1∑

k′=0

β(K−k
′
)Ns

Ns−1∑

q=0

βp−qai(k
′
Ns + q)aT

i (k
′
Ns + q)+

p∑

m=0

βp−mai(m + KNs)aT
i (m + KNs).

Since 0 < β < 1, we can choose Ns so that β(K−k
′
)Ns ≈

0, for k′ < K . With this choice, the first term in this last
expression can be neglected. As a consequence, the matrix

Table I: LADMM ALGORITHM

1: Set n = 0, k = 0, and initialize λi[0, 0], ∀i,
and z[0, 0] randomly;

2: if n = 0 or mod(n, Ns) = 0
then t = 0, ρ = cβt

Φ−1
i (n) = (ai(n)aT

i (n) + cI)−1

vi(n) = ai(n)xi(n), t = t + 1
else ρ = cβt

compute vi(n) andΦ−1
i (n) ∀i as in (12) and (13)

t = t + 1
end

3: Repeat until convergence over index k
θi[k + 1, n] = Φ−1

i (n) (vi(n) − λi[k, n] + ρz[k, n])
Run consensus over θi[k + 1, n] and λi[k, n] to get
θ[k + 1, n] and λ[k, n] until convergence;

z[k + 1, n] =
1

ρN
tµ

(
Nλ[k, n] + ρNθ[k + 1, n]

)

λi[k + 1, n] =λi[k, n] + ρ
(
θi[k + 1, n]− θ[k + 1, n]

)

Set k = k + 1, if the convergence criterion is satisfied, set
n = n + 1 and go to step 2, otherwise go to step 3.

Φi(p + KNs), forK > 1, can be approximated as

Φi(p + KNs)

=
p∑

m=0

βp−mai(m + KNs)aT
i (m + KNs) + cβpI

= βΦi(p − 1 + KNs) +ai(p + KNs)aT
i (p + KNs).

Using this updating rule, we can exploit the matrix inversion
lemma to computeΦ−1

i (p + KNs) for 0 ≤ p ≤ Ns − 1 and
K = 0, 1, . . . iteratively, as in (13). In this way, the inversion
operation is only needed at the beginning of each block. In
summary, the RLS algorithm with lasso penalty, which we
call Lasso ADMM (LADMM), is reported in Table I.

Since the lasso constraint is known for introducing a bias
in the estimate, we introduce the non-negative garotte esti-
mator, as in [8]. Inspired from the approach in [8], we re-
place the nonlinear function tµ(x) in the LADMM algorithm
with the garotte thresholding function tg(x) defined as a vec-
tor whose entries are derived applying the threshold tg(x) =
(1− µ2/x2)x if |x| > µ and tg(x) = 0 for−µ ≤ x ≤ µ. We
call this second algorithm Garotte ADMM (GADMM).

3. NUMERICAL RESULTS

To test the convergence of the proposed algorithm, we con-
sider as an example a network of N = 20 cooperative nodes.
The vector θ represents the activity of L = 4 base stations
on a given frequency. We assume that the regression vector
follows a Gaussian distribution a(l) ∼ (0L, IL), with noise
variance σ2

n,i = 10−1, ∀i. The entries of vector θ switch
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from zero (no activity) to a non-zero value at some unknown
time instant, to mimic the time-varying nature of radio nodes’
activity. In Fig. 1 we report two entries of the vector θ ver-
sus time, along with their estimates obtained by using the
LADMM algorithm described in Table I, for two values of
the forgetting factor: β = 0.6 (upper subplots) and β = 0.9
(lower subplots). We set the parameters as µ = 10, c = 100,
Ns = 10. We can notice that, at the beginning there is a strong
improvement of estimation accuracy resulting from the coop-
erative approach. We can also observe how the RLS estimates
are able to track the abrupt variations of the estimated param-
eters. The periodic fluctuations appearing in the estimated
values are mainly due to the block structure of the proposed
RLS.
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Fig. 1. Two entries of the parameter θ versus the number of
current observationsn for two values of β, c = 100,Ns = 10.
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Fig. 2. Two entries of the parameter θ versus the number of
current observationsn for two values of β, c = 700,Ns = 20.
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Fig. 3. Average mean square estimation error versus the num-
ber of current observations n for a time-invariant θ.

In Fig. 1, we compare the LADMM with the garotte
ADMM algorithm (GADMM). As expected, the garotte cor-
rection yields a smaller bias. To better evaluate the impact of
the RLS filter memory on the system performance, we have
plotted in Fig. 2 the estimates of two entries of the vectorθ for
c = 700 andNs = 20. We can notice that, as β increases, the
accuracy of the estimate improves but the algorithm becomes
less robust to sudden time variations of the base stations’ ac-
tivity. Finally, in Fig. 3 we report the average estimation error
E[‖θ̂[n] − θ‖2] versus the time index n for a time-invariant
θ, obtained by averaging the results over 100 independent re-
alizations, setting β = 0.6 (upper subplot), β = 0.9 (lower
subplot) with c = 100, Ns = 10. We can note that again the
GADMMperforms better than the LADMM approach and, as
expected, the impact of the periodical updating rule on ρ n is
more evident for lower β values.

4. CONCLUSIONS

In this paper we have proposed a distributed RLS algorithm
with l1-norm constraint useful for cooperative sensing of
slowly time-varying phenomena. The use of the alternating
direction method of multipliers with a time-varying quadratic
constraint has been instrumental to find out a recursive dis-
tributed solution. A garotte correction has then been intro-
duced to improve the estimation accuracy on the non-zero
entries of the estimated vector. The method incorporates
an intermediate consensus step and, in its present form, it
assumes a double time-scale approach: For each iteration
of the distributed algorithm, we need to run a consensus al-
gorithm. However, adopting methods already appeared in
the literature, the problem can also be reformulated in a sin-
gle time-scale framework [6], where at each iteration only a
single consensus update is run, without waiting for the full
convergence.
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