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ABSTRACT

Motivated by the problem of adaptive resource management in
decentralized sensor networks, the paper derives an algorithm for
the distributed computation of the conditional posterior Cramér-
Rao lower bound (PCRLB) for nonlinear tracking applications
as an alternative to the non-conditional (conventional) PCRLB.
Using the proposed conditional bound, a decentralized adaptive
sensor-selection algorithm is then developed with the objective of
dynamically activating a subset of observation nodes to optimize
the network�’s performance. Our Monte Carlo simulations verify
the superiority of the proposed decentralized PCRLB based sensor
selection approach in bearing only tracking applications over its
conventional counterparts.

Index Terms— Data fusion, Distributed estimation, Multisen-
sor tracking, Particle lters, and Sensor Selection.

1. INTRODUCTION

Adaptive sensor resource management is an important task in geo-
graphically distributed sensor networks, where power and bandwidth
limitations constraint the number of sensors active at a particular
time. This paper focuses on decentralized networks [1], where there
is no central fusion node and tracking is performed in a distributed
fashion across the network. We derive a decentralized algorithm for
computing the conditional PCRLB for tracking sensor networks as
an alternative to the non-conditional (conventional) PCRLB. Using
the proposed bound, we develop a decentralized sensor-selection al-
gorithm and apply it for tracking targets in large sensor networks.

The conventional PCRLB [2] considers observations and state
variables as random. Consequently, the conventional PCRLB is de-
termined primarily from the state model, observation model, and
prior knowledge of the initial state of the system leading to an
offline bound that makes it inefcient for adaptive resource man-
agement. An alternative is the conditional PCRLB [3], which is a
function of the past history of observations. The online conditional
PCRLB leads to a more accurate representation of the current sys-
tems�’s performance and is, therefore, a better criteria for adaptive
sensor-selection. Existing conditional PCRLB expressions [3]-[5]
are, however, limited to centralized architectures utilizing a fusion
centre, which make them inappropriate for the decentralized topolo-
gies. The paper derives the decentralized PCRLB (dPCRLB) and
computes it distributively without requiring a fusion algorithm.
Prior Work: Decentralized adaptive sensor selection arises in sev-
eral applications, e.g., cellular networks [20], decentralized tracking
in wireless Ad hoc sensor networks [21], robotic localization and
underwater acoustics [22]. In principle, sensor selection [6]-[10] is

a stochastic problem that involves optimization of a pre-dened cost
function. Reference [11], for example, minimizes the uncertainty el-
lipsoid function associated with every possible sensor congurations
using convex optimization. Other cost functions considered previ-
ously are based on the mean square error (MSE) [12] of the state
estimates and overall entropy of the system [13]. For adaptive sen-
sor resource management, the PCRLB [14]-[19] has been recently
shown as an effective criteria for selecting sensors. The PCRLB pro-
vides a near-optimal bound of the achievable tracker�’s performance
and can be calculated predictively. Further, the PCRLB is indepen-
dent and not constrained by the estimation methodology employed.
Existing PCRLB-based selection techniques are, however, limited to
centralized and hierarchical architectures [16], and when extended to
distributed/decentralized topologies use suboptimal expressions [15]
for computing the PCRLB. Our previous work [23, 24] improves
on [15] by deriving the exact expression for computing the non-
conditional dPCRLB distributively for full-order [23] and reduced-
order [24] decentralized state estimation. In [14], we have proposed
a dPCRLB-based sensor selection algorithm that uses conditional
PCRLB as a selection criteria. This paper couples our previous work
by extending our non-conditional dPCRLB framework [23, 24] to
conditional PCRLB and applies the later to full-order adaptive sensor
selection in tracking applications. Through Monte Carlo simulations,
we verify the superiority of the conditional dPCRLB sensor selection
over its existing counterparts including the non-conditional PCRLB.

The rest of the paper is organized as follows. In Section 2,
we formulate the problem and review non-conditional dPCRLB.
Section 3 derives the conditional dPCRLB, while the conditional
dPCRLB based sensor selector is presented in Section 4. The effec-
tiveness of the proposed conditional dPCRLB in tracking applica-
tions is illustrated through simulations in Section 5. Section 6 then
concludes the paper.

2. PROBLEM FORMULATION

A decentralized network consisting of Nf processing nodes (local
fusion nodes) and Ns sensor nodes, and observing a set of nx state
variables based on the following state-space model is considered

State model: x(k) = f(x(k − 1)) + ξ(k) (1)

Observation
model:




z(1)(k)

...
z(Ns)(k)





︸ ︷︷ ︸
z(k)

=




g(1)(x(k))

...
g(Ns)(x(k))





︸ ︷︷ ︸
g(x(k))

+




ζ(1)(k)

...
ζ(Ns)(k)





︸ ︷︷ ︸
ζ(k)

, (2)
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where z(m)(k) is the measurement made by sensor node m at time
instant k, (1 ≤ k), for (1 ≤ m ≤ Ns). Terms ξ(·) and ζ(·) are,
respectively, the global uncertainties in the process and observation
models. The local fusion nodes are modeled as vertices of the fu-
sion graph Gf = (νf ,Ef ), while the sensor nodes are modeled as
the vertices of the observation graph Gs = (νs,Es). The edge set
Es ⊆ νs × νf represents the sensor to fusion node communica-
tion constraints, i.e., if observation node ml can send information to
fusion node l then (ml, l) ∈ Es. The edge set Ef ⊆ νf × νf repre-
sents the fusion communication constraints, i.e., if fusion node q can
communicate with fusion node i then (q, i) ∈ Ef . We also dene a
fusion-to-fusion neighbourhood ℵ(l)

fuse that includes the set of fusion
nodes m '= l connected to fusion node l. In the decentralized sen-
sor selection scenario, each local fusion node can communicate only
with sensors and other fusion nodes within its immediate neighbour-
hood referred to as the local surveillance region. Due to physical lim-
itations, only a maximum number Nsl of sensors can be activated by
fusion node l at each iteration. The total number Nmax of simultane-
ously active sensors is also limited, i.e.,

∑Nf
l=1 Nsl ≤ Nmax < Ns.

The entire state x(k) is estimated by running localized lter at fusion
node l, for (1 ≤ l ≤ Nf ), with the reduced state-space model

x(k) = f(x(k − 1)) + ξ(k) (3)

z(ℵ(l)
obs )(k) = g(ℵ(l)

obs )(x(k)) + ζ(ℵ(l)
obs )(k), (4)

where local observations are restricted to z(ℵ(l)
obs )(k) collected from

the sensors in the neighbourhood ℵ(l)
obs selected by fusion node l.

Since ℵ(l)
obs varies with time, dimension of z(ℵ(l)

obs )(k) is also time-
varying. The following subsection reviews key concepts from [3, 26]
needed to understand the rest of the paper.

A. Posterior Cramér Rao Lower Bound (PCRLB)
The conventional PCRLB inequality [2] lower bounds the mean

square error (MSE) of the estimate x̂(0 :k+1) to

E{(x̂(0 :k)−x(0 :k))(x̂(0 :k)−x(0 :k))T }≥ [J(0 :k)]−1, (5)

where the FIM J(0 :k) is dened as

J(0 :k)=EP (x(0:k),z(1:k))

{
−∆x(0:k)

x(0:k) logP (x(0:k)|z(1:k))
}
. (6)

Notation ∆x(k)
x(k−1) = ∇x(k−1)∇T

x(k) denotes the second order
partial derivative with the rst order partial derivative ∇x(k) =
[ ∂
∂X1(k)

, . . . , ∂
∂Xnx(k) ]

T . The FIM J(k) associated with the esti-
mate x(k) is obtained from the inverse of the (nx×nx) right-lower
square block of the inverse of J(0 : k). Proposition 1, given below,
computes the global FIM at time k+1 as a function of local ltering
FIM J(l)(x(k+1)) and local predictive FIM J(l)(x(k+1|k)).
Proposition 1. The sequence {J

(
x(k)

)
} corresponding to the

global information submatrix (dPCRLB) follows the recursion

J
(
x(k+1)

)
=C22(k)−D21(k)

(
J
(
x(k)

)
+D11(k)

)−1
D12(k) (7)

whereD11(k),D21(k),D12(k), and C22(k) are given by

D11(k) = E
{
−∆x(k)

x(k) logP
(
x(k + 1)|x(k)

)}
(8)

D12(k) =
(
D21(k)

)T
=E

{
−∆x(k+1)

x(k) logP
(
x(k + 1)|x(k)

)}
(9)

C22(k+1)≈
Nf∑

l=1

J(l)(x(k+1))−
Nf∑

l=1

J(l)(x(k+1|k)) (10)

+ E
{
−∆x(k+1)

x(k+1) logP
(
x(k + 1)|x(k)

)}
.

We proved Proposition 1 in [26]. Note that the expectations in Propo-
sition 1 are with respect to P (x(0 : k),z(1 : k)).

Next, the auxiliary FIM is dened in terms of the posterior dis-
tribution Pa(k)!P (x(0 :k)|z(1 :k)) as follows

JAUX(0 :k) ! EPa(k)

{
−∆x(0:k)

x(0:k) logPa(k)
}
. (11)

Reference [3] has derived centralized recursive expressions for com-
puting JAUX(k) (the inverse of (nx × nx) right-lower square block
of the inverse of JAUX(0 :k)). Alternatively, JAUX(k) can be derived
using Proposition 1 except for the expectation, which is now taken
with respect to Pa(k). The conditional PCRLB provides a bound on
the performance of estimating x(0 : k) given that the past observa-
tions z(1 : k−1) are known [3]. The conditional MSE of the state
vector is lower bounded by

EPc(k)

{
x̂(0 :k)− x(0 :k))(x̂(0 :k)− x(0 :k))T

}
≥ [I(0 :k)]−1,

(12)
where Pc(k) ! P (x(0 : k), z(k)|z(1 : k− 1)) and I(0 : k) !
EPc(k)

{
− ∆x(0:k)

x(0:k) logPc(k)
}

. Proposition 1 [3] updates the con-
ditional FIM denoted by L(k+1) (the inverse of the (nx × nx)
right-lower block of [I(0 :k+1)]−1) for estimating x(k+1).

Proposition 2. The centralized conditional FIM L(k + 1) associ-
ated with the filtering estimate x̂(k+1) follows the recursion

L(k+1)=B22(k)−B21(k)
(
JAUX(k)+B11(k)

)−1
B12(k), (13)

where B11(k)=EPc(k+1)

{
−∆x(k)

x(k) logP
(
x(k + 1)|x(k)

)}
, (14)

B12(k)=[B21(k)]T=EPc(k+1)

{
−∆x(k+1)

x(k) logP
(
x(k+1)|x(k)

)}
, (15)

B22(k)=EPc(k+1)

{
−∆x(k+1)

x(k+1) logP
(
x(k + 1)|x(k)

)}

+EPc(k+1)

{
−∆x(k+1)

x(k+1) logP
(
z(k+1)|x(k+1)

)}
. (16)

where Pc(k+1) ! P (x(0 :k+1),z(k+1)|z(1 :k)).

3. DECENTRALIZED CONDITIONAL DPCRLB

This section presents the decentralized algorithm for computing the
global conditional FIM from the local conditional FIMs. The local
conditional FIMs are dened rst.
Definition 1. The local conditional FIM I(l)(0 :k+1) correspond-
ing to the local estimate x̂(l)(0 :k+1), for (1 ≤ l ≤ N ), is defined as

I(l)(0 :k+1) ! E
P

(l)
c (k+1)

{
−∆x(0:k+1)

x(0:k+1) logP
(l)
c (k+1)

}
, (17)

where P (l)
c (k +1) ! P (x(0 : k +1),z(l)(k +1)|z(l)(1 : k)). The

local bound L(l)(k+1) on x̂(l)(k+1), is given by the inverse of the
(nx × nx) right-lower block of [I(l)(0 :k+1)]−1.
Definition 2. The local predictive conditional FIM I(l)(0 :k+1|k) is
defined as follows

I(l)(0 :k+1|k)!E
P

(l)
p (k+1)

{
−∆x(0:k+1)

x(0:k+1) logP
(l)
p (k +1)

}
, (18)

where P (l)
p (k +1)! P (x(0 : k + 1)|z(l)(1 : k)). The local bound

L(l)(k+1|k) on x̂(l)(k+1|k) is given by the inverse of the (nx×nx)
right-lower block of [I(l)(0 :k+1|k)]−1. Note that Proposition 1 can
be used to compute both L(l)(k+1) and L(l)(k+1|k) with relevant
local distributions replacing the global ones. Theorem 1 provides a
recursive expression for computing the overall conditional FIM as a
function of local FIMs.
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Theorem 1. The sequence {L
(
x(k)

)
} of the global information

sub-matrices follows the recursion

L(k+1)=C22(k)−C21(k)
(
JAUX(k) +C11(k)

)−1
C12(k) (19)

C11(k) = EPc(k+1)

{
−∆x(k)

x(k) logP
(
x(k + 1)|x(k)

)}
, (20)

C12(k) = EPc(k+1)

{
−∆x(k+1)

x(k) logP
(
x(k + 1)|x(k)

)}
, (21)

C22(k)≈
N∑

l=1

L(l)(k+1)−
N∑

l=1

L(l)(k+1|k) (22)

+EPc(k+1)

{
−∆x(k+1)

x(k+1) logP
(
x(k + 1)|x(k)

)}
.

Theorem 1 is similar in structure to the conventional dPCRLB
(Proposition 1) with two main differences: (i) The local conditional
FIMs (L(l)(k+1) and L(l)(k+1|k)) are used instead of their non-
conditional counterparts, and; (ii) The global FIM for previous time
J(k) is replaced by the global auxiliary FIM JAUX(k).
Proof of Theorem 1: Decomposing x(0 : k+1) = [xT (0 : k−
1),xT (k),xT (k+1)]T , Eq. (17) for iteration k+1 reduces to

I(0:k+1)=E
{
−





∆x(0:k−1)
x(0:k−1) ∆x(k)

x(0:k−1) ∆x(k+1)
x(0:k−1)

∆x(0:k−1)
x(k) ∆x(k)

x(k) ∆x(k+1)
x(k)

∆x(0:k−1)
x(k+1) ∆x(k)

x(k+1) ∆x(k+1)
x(k+1)




logPc(k+1)

}

!




A11(k) A12(k) 0
A21(k) A22(k) +C11(k) C12(k)

0 C21(k) C22(k+1)



 . (23)

Block 0 stands for a block of all zeros. Terms C11(k), C12(k) and
C21(k) are dened as in Eqs. (20)-(21). Terms A11(k), A12(k),
A21(k), and A22(k) are derived as follows
[
A11(k) A12(k)
A21(k) A22(k)

]
=E

{
−



∆
x(0:k−1)
x(0:k−1) ∆x(k)

x(0:k−1)

∆x(0:k−1)
x(k) ∆x(k)

x(k)



logPa(k)

}
(24)

where Pa(k) = P (x(0 :k)|z(1 :k)) and JAUX(k) the inverse of the
(nx × nx) right-lower block of (24), i.e.,

JAUX(k) = A22(k)−A21(k)
[
A11(k)

]−1
A12(k). (25)

The decentralized computation of C22(k+1)=E{−∆x(k+1)
x(k+1) logPc(k+

1)} is based on Lemma 1 below, which is an extension of the Chong-
Mori-Chang track-fusion theorem [25] for the conditional posterior.
Lemma 1. Assuming that the observations conditioned on the state
variables are independent, the global posterior for a N -sensor net-
work is factorized as follows

Pc(k+1)=P
(
x(k+1)|x(k)

)
P
(
x(k)|x(k−1)

)
Pa(k − 1) (26)

×
∏N

l=1P
(
x(k+1), z(l)(k+1)|z(l)(1 :k)

)∏N
l=1P

(
x(k)|z(l)(1 :k)

)
∏N

l=1P
(
x(k+1)|z(l)(1 :k)

)∏N
l=1P

(
x(k)|z(l)(1 :k−1)

)

The proof of Lemma 1 is not included to save on space. Based on
Lemma 1, C22(k+1) = E{−∆x(k+1)

x(k+1) logPc(k+1)} is

C22(k+1)=EPc(k+1)

{
−∆x(k+1)

x(k+1) log
(
P (x(k+1)|x(k))

)}

+
N∑

l=1

EPc(k+1)

{
−∆x(k+1)

x(k+1)log
(
P (x(k+1),z(l)(k+1))|z(l)(1 : k))

)}

−
N∑

l=1

EPc(k+1)

{
−∆x(k+1)

x(k+1) log
(
P (x(k+1)|z(l)(1:k))

)}
. (27)

Approximating the summation terms on the right hand side of
Eq. (27) with L(l)(k+1) and L(l)(k+1|k), term C22(k) reduces
to Eq (22). Finally L(k+1) is calculated as the inverse of the right
lower (nx×nx) sub-matrix of [I(0 :k+1)]−1, i.e.,

L(k+1) = C22(k+1)− (28)
[
0 C21(k)

] [ A11(k) A12(k)
A21(k) A22(k) +C11(k)

]−1[
0

C12(k)

]

= C22(k+1)−C21(k)
(
JAUX(k) +C11(k)

)−1
C12(k). "

The conditional dPCRLB is computed distributively using Theo-
rem 1, which instead requires JAUX(k) obtained from Proposition 1.

4. CONDITIONAL DPCRLB BASED SENSOR SELECTION

The cost function for sensor selection is based on the conditional
dPCRLBs related to the (x, y) coordinates of the target as follows

C(k + 1) = [L(x(k+1))]−1
xx + [L(x(k+1))]−1

yy . (29)

where [L(x(k+1))]−1
xx and [L(x(k+1))]−1

yy are the conditional dP-
CLRBs corresponding to the x and y coordinates at iteration k+1.
Our observation node selection is carried out in several iterations.
During initialization at each iteration, the best observation node for
each fusion centre is picked. One observation node among Nf se-
lected sensors forms the initial neighbourhood. The process is re-
peated till the desired number of observation nodes is included in
the neighbourhood set. To select the best observation node at each
fusion centre, we use the following local cost function (expressed in
terms of fusion-node-observation-node (l,ml) combination)

C(l,ml)(k+1)=[L(ℵ(l)
obs )(x(k+1))]−1

xx +[L(ℵ(l)
obs )(x(k+1))]−1

yy .(30)

where [L(ℵ(l)
obs )(x(k+1))]−1

xx and [L(ℵ(l)
obs )(x(k+1))]−1

yy are the con-
ditional dPCRLB corresponding to the x and y-coordinates in

L(ℵ(l)
obs )

(
x(k+1)

)
= [C22(k+1)](l,ml) (32)

−D21(k)
(
J(min)

AUX (x(k)) +D11(k)
)−1

D12(k),

with [C22(k+1)](l,ml) = L(l,ml)(x(k+1))+ Lmin
k+1|k+1(t)

−L(l,ml)(x(k+1|k)) −L(min)
k+1|k(t) +Q−1(k). (33)

Note that Eqs. (32) and (33) are representations of Eqs. (10) and (7)
for a single fusion-node-observation-node (l,ml) combination.
Notation L(ℵ(l)

obs )(x(k+ 1)) correspond to the FIM for estimates
obtained from the iterating neighbourhood ℵ(l)

obs(t) as it is being
optimized. Once optimized, ℵ(l)

obs(k + 1) = ℵ(l)
obs(t). Parameters

D21(k) = (D12)T (k) and D11(k) are available from the condi-
tional dPCRLB computation block and are xed for various itera-
tions of the senor selector. Parameter J(min)

AUX (x(k)) corresponds to
the dPCRLB from the previously optimized neighbourhood in the
last k iteration. Parameter [C22(k+1)](l,ml) is local for the (l, ml)
fusion-node-observation-node combination and is obtained from
Eq. (33). Parameter L(l,ml)(x(k+ 1)) and L(l,ml)(x(k+1|k)) are
the conditional dPCRLBs corresponding to the ltering and predic-
tion estimates obtained at fusion node l from a single observation
at observation node ml. Finally, L(min)

k+1|k(t) and L(min)
k+1|k+1(t) are

the conditional FIMs corresponding to the ltered and predicted
estimates obtained from the iterating neighbourhood ℵ(l)

obs(t). Our
sensor selection approach is based on Steps 1 and 2.
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Fig. 1. Actual target�’s track along with the estimated track.

1. Initial Selection: has the following sub-steps:

a. At fusion node l, for (1 ≤ l ≤ Nf ) the conditional FIMs
L(l,ml)(x(k+1)) and the cost function C(l,ml)(k+1) correspond-
ing to the fusion-node-observation-node (l,ml) combination are
computed based on (30)-(33).
b. From all (l,ml) combinations, the fusion node l selects one ob-
servation node for which C(l,ml)(k+1) is minimum. In other words,
a single observation node is selected by each fusion node that pro-
vides the optimal performance at that node when at the most one
observation is used.
c. At this stage, a complete enumeration encompassing all fusion
nodes (1 ≤ l ≤ Nf ) is performed. We select one fusion-node-
observation-node combination (q = l, mq = ml) with the mini-
mum cost function associated to it across the network. A minimum
consensus algorithm accomplishes Step 1(c).
d.Matrices L(q,mq)(x(k+1))

∆
= L(min)

k+1|k and L(q,mq)(x(k+1|k)) ∆
=

L(min)
k+1|k+1 corresponding to the FIMs for the combination (q,mq)

are communicated across the network. The neighbourhood struc-
ture is given by ℵ(1) = {ℵ(l)

obs(1)}
Nf . After the initial selection, all

ℵ(l)
obs(1) = {} (i.e., empty sets) except for l = q where ℵ(q)

obs = {mq}.
Note that we have added time index t = 1 to each neighbourhood
to indicate the iteration number for the fusion selection stage. The
FIMs L(l,ml)(x(k+1)) computed in Step 1a. are limited to the sen-
sors within the neighbourhood of fusion node l.

2. Subsequent Selection: is based on the following substeps: Each
fusion node l, (1 ≤ l ≤ Nf ), selects an observation node in its im-
mediate neighbourhood and for it computes the cost function taking
into account the previously selected neighbourhood (ℵ(l)obs(t)) and the
associated FIMs L(min)

k+1|k(t) and L(min)
k+1|k+1(t).

a. Fusion node l computes [C22(k+1)](l,ml), for (ml /∈ ℵ(l)
obs(t)),

using (32) and (33).
b. Given L(ℵ(l)

obs )(x(k+1)), Eq. (30) is used to compute the local cost
function C(l,ml)(k + 1).
c. Select the fusion node L and observation node mL combination
corresponding to the minimum overall cost function using a mini-
mum consensus algorithm.
d. Append the neighbourhood structure to include the new combi-
nation N(l)

obs (t+1) = {N (l)
obs (t)}, appended with the new combina-

tion. The overall FIM corresponding to the appended neighbourhood
combination is denoted by L(L,mL)(k+1).
e. Matrix L(min)(x(k+1)) now equals to L(L,mL)(k+1), which
now corresponds to the overall conditional FIM corresponding to
the selected sensors. The new value of matrix L(min)(x(k+1)) is
communicated across the network.

3. Termination: Check if Nmax has been reached. Else, go to Step 2.
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Fig. 2. RMSE for target�’s position averaged over all fusion nodes.

5. EXPERIMENTAL RESULTS

A large-scale distributed bearing-only tracking (BOT) applica-
tion [27] is simulated. A sensor network consisting of Ns = 225
sensor nodes and Nf = 9 fusion nodes scattered in a square region
of dimension (1500 × 1500) m2 is considered. The target starts
its maneuver from coordinates (1400, 1400). The initial course
is set at −140◦ with the standard deviation of the process noise
σv = 1.6 × 100. For simplicity, the observation nodes are as-
sumed distributed uniformly with the fusion node at the centre of
its rectangular (500 × 500)m neighbourhood. Each fusion node
communicates only with selected observation nodes within its rect-
angular (500×500)m neighbourhood and other fusion nodes within
a connectivity radius of 550 m. A fusion node is linked to at least one
other fusion node in the network. The maximum number of active
observation nodes at each iteration is Nmax = 18 with the con-
straint that each fusion node (shown as �‘#�’) can select four sensors
at the most. Fig. 1 shows the target tracks along with locations of
observation nodes and local fusion nodes. The observation model is

Z(l)(k) = atan
(
X(k) −X(l)

Y (k)− Y (l)

)
+ ζ(l)(k), (34)

where (X(l), Y (l)) are the coordinates of node l. Target moves ac-
cording to a clockwise coordinated turn kinematic motion model [27]
with maneuver acceleration parameter Am set to 1.08×10−5km/s2.
Since the distributed dynamical system is non-linear, we use the
distributed particle lter implementation (CF/DPF) [28] to track
the targets and compute the local FIMs. Our conditional dPCRLB
sensor selection approach is compared with other distributed ap-
proaches [14, 15]: 1. Non-conditional dPCRLB-based sensor se-
lection: where the conventional PCRLB is the selection crite-
ria. 2. Random-sensor approach: Observation nodes are selected
randomly by each fusion node from within its neighbourhood.
3. Closest-sensor approach: where the observation nodes closest to
the estimated location of the target are selected. Fig. 2 shows the
position root mean square error (RMSE) for the four approaches,
where the conditional dPCRLB based sensor selection approach
outperforms the other methods and provides the minimum RMSE.

6. SUMMARY

In this paper, a consensus-based sensor selection approach based on
the conditional dPCRLB is proposed for a decentralized sensor net-
work with two types of nodes: sensor nodes with limited power, no
processing ability, which only make observations, and; local fusion
nodes without any power constraints for processing and communica-
tion. The online conditional PCRLB leads to a more accurate repre-
sentation of the systems�’s current performance. Our numerical sim-
ulations verify the efciency of the proposed decentralized sensor
selection approach over its non-conditional counterpart.
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