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ABSTRACT 
In this paper, we propose a novel game-theoretic framework for 

analyzing and understanding how strategic networks are formed 

endogenously, driven by the self-interested decisions of individual 

agents aiming to maximize their own utilities by trading-off the 

costs and benefits of forming links with other agents. We explicitly 

model and analyze the scenario in which agents benefit from 

disseminating their own information to other agents. We rigorously 

prove that the equilibria of strategic networks frequently exhibit a 

core-periphery structure, where there are only few agents at the 

center (core) of the network while the majority of agents are at the 

periphery of the network and communicate with other agents via 

links maintained by the “core” agents, who play the role of 

“connectors” in the network. Also, we are able to determine under 

what conditions the strategic networks operating in equilibrium are 

minimally connected (i.e. there is a unique path between any two 

agents) and have short network diameters. These properties are 

commonly observed on the Internet and important because they 

ensure the efficiency and robustness of the resulting equilibrium 

networks. However, none of these has been rigorously proven in a 

formal framework before. 

Index Terms— Strategic networks, information 

dissemination, link formation 

 

1. INTRODUCTION 
In traditional networks (e.g. communication networks), agents are 

obedient and the topology of the network is dictated by a system 

designer [3][4]. Different from this, a common feature of the 

emerging social networks, e.g. social networks like Twitter [1] and 

expert networks like Amazon Mechanical Turk [2], is that agents 

(i.e. people or smart machines) are usually self-interested and can 

proactively create and dissolve links to other agents in order to 

maximize their own utilities from the information exchange. In this 

paper, we refer to such networks, formed by the agents’ self-

interested (strategic) decisions, as strategic networks. This strategic 

behavior of the agents shapes the emerging network topologies as 

well as their stability and efficiency. A novel framework is thus 

necessary to enable the rigorous study of the efficiency and the 

stability of such strategic networks. 

The theoretical study on link formation in social and economic 

networks has been conducted by microeconomics researchers as 

well as engineers[7][8], who analyze the emerging network 

topologies under the agents’ self-interest. These works focus on the 

scenario in which agents benefit solely from consuming 

information produced by other agents (e.g. downloading files in 

P2P networks). In this scenario, the agents’ benefits only depend 

on the total amount of information that they consume [8]. The 

scenario where agents’ benefits come from disseminating their 

own information to other agents (e.g. advertising in social 

networks [1]), was not considered in the existing literature. In this 

work, we specifically focus on the scenario where agents’ benefits 

come from to information dissemination, which we refer to as the 

Information Dissemination Game (IDG). In the IDG, since the 

benefit of each agent comes from the information dissemination to 

others, the information possessed by other agents has no influence 

on its incentive. In contrast, the number and variety of agents it 

connects with form the most important factor that shapes its 

incentive, which exhibit a sharp contrast to the existing literature. 

We consider a strategic network whose topology is constructed 

by agents strategically forming links to disseminate their 

information. Each agent is able to disseminate its information to 

any other agent connected via a path. The benefit of an individual 

agent comes from the reception of its disseminated information by 

other agents. During the link formation process, each agent wants 

to maximize its own benefit from information dissemination over 

the formed links while minimizing its link formation cost. Given 

the formalism of the IDG, we study what non-cooperative 

equilibria (i.e. equilibria resulting based on the agents’ self-

interested link formation actions) emerge and characterize how 

efficient these equilibria are from a social welfare perspective 

compared to the socially optimal networks.  

Our analysis is able to characterize and prove several important 

properties of the strategic network at equilibria, which have been 

empirically measured in the network science literature [5][6], but 

have not been rigorously proven in a formal framework. First, we 

show that given the agents’ interests in information dissemination, 

strategic networks operating in equilibrium usually exhibit core-

periphery topologies where there are only a few agents at the 

center (core) of the network while the majority of agents are at the 

periphery of the network and communicate with other agents via 

links maintained by the core agents. Also, the proposed framework 

rigorously proves that the strategic networks operating in 

equilibrium are often minimally connected (i.e. there is a unique 

path between any two agents), and we prove that they have short 

network diameters which are independent of the population size of 

the network. We also briefly discuss the dynamic link formation 

process where agents can learn the strategies played by others and 

asynchronously adapt their strategies by playing the best response 

dynamics. In summary, the goal of our framework and analysis is 

to guide network and application designers in understanding the 

impact of strategic interactions among agents and enable them to 

design better incentive protocols that enhance the stability and 

efficiency of the network. 

The remainder of this paper is organized as follows. In Section 

2, we describe our model of the IDG. In Section 3, we characterize 

the properties of the emerging non-cooperative equilibria in IDG. 

Section 4 studies the dynamic link formation process. Section 5 

concludes the paper.  

 

2. SYSTEM MODEL 
Let {1,2, , }N n= …  be the set of agents in the network with 

3n ≥  and let i  and j  denote typical members in this set. Each 

agent i  possesses some information (e.g. news, advertisement, 

data) in the amount 
i
x +∈ R

 
which it finds in its own benefit to 

disseminate to other agents. We consider a simultaneous move 
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game where agents strategically determine whether to create links 

with other agents in order to disseminate their information. We 

consider unilateral link formation, where links are created by the 

unilateral actions of agents and link costs are one-sided. Thus, the 

mutual consent of two agents in order to create a link between 

them is not required. The link formation strategy adopted by an 

agent i  is denoted by a tuple 1( ) {0,1}n
i ij j i
g −

≠
= ∈g . Each 

element 
ij
g  in this tuple is binary and indicates whether agent i  

formed a link with agent / { }j N i∈ . We set 1
ij
g =  if agent i  

forms a link to agent j , and 0
ij
g =  otherwise. The creation of a 

link incurs a cost to the creator and hence, its decision to form a 

link involves trading-off the benefit received from disseminating 

information using this link and the incurred cost. Given the 

strategies of agents, a strategy profile in the information 

dissemination game is defined as 
1

( )n
i i=

≜g g . It should be noted 

that since 
ij
g  is binary and n  is finite, the space which g  takes 

value from is also finite, which is denoted as G . 

The information flow across a link is assumed to be undirected. 

That is, given a link between any two agents, the information can 

be transmitted in both directions (i.e. from the creator to the 

recipient and vice versa) across this link. We define 
1

( )n
i i=

≜g g  to 

indicate the agents’ connectivity, with ( )
i ij j i
g

≠
=g  and 

max{ , }
ij ij ji
g g g=  for each / { }j N i∈ . We can thus define the 

topology of the network as the closure of g , i.e. 

( ) {( , ) | ,  1}
ij

cl i j N N i j g= ∈ × ≠ =g . 

It can be easily proved that there will be at most one link 

between any two agents ,i j  upon their self-interests, since the 

information flow is undirected and hence it is wasteful for an agent 

to redundantly form an already established link. Therefore, we use 

( , )i j  and ( , )j i  refer to the same link formed by agent i  if 

1
ij
g = , and vice versa. Hence, ( )cl g also represents an 

undirected network. In the rest of this paper, we will use the terms 

“topology” and “network” interchangeably. A path in a network is 

defined as follows. 

Definition 1 (Path). Given an network ( )cl g , a path between 

agents i  and j  is a tuple 1 1 2
(( , ),( , ), ,( , ))

ij m
path i j j j j j= …  for 

some 0m ≥ , where 
1
, ,

m
j j…  are agents distinct from i  and j  

such that ( )
ij

path cl⊆ g . 

Two agents i  and j  are called connected in a network ( )cl g , 

if and only if there is at least one path between them in ( )cl g . We 

assume that an agent i  can disseminate its information to any 

agent j  with whom it has a path. The benefit that agent i  receives 

by disseminating its information to agent j  is proportional to the 

amount of information 
i
x . Given this, the utility of an agent i  in 

the IDG can be expressed as: 

( ) ( )
( )

i i
i i ij ijj N j N
u x kα

∈ ∈
= −∑ ∑g g

g . (1) 

Here 
ij
α +∈ R  is the benefit that agent i  receives by 

disseminating unit information to agent j  and 
ij
k +∈ R  is the 

link formation cost for agent i  to form a link with agent j . 

( )
i
N g  is defined as the set of agents to whom agent i  is 

connected, and ( )
i
N g  is defined as the set of agents to whom 

agent i  forms links. Without loss of generality, we normalize 

[0,1]
ij
α ∈ . Below we briefly explain the utility function in (1). 

Remark 1: We assume that when there are multiple paths 

between agent i  and agent j  and multiple copies of agent i ’s 

information are received by agent i , agent i  receives a fixed 

benefit of 
i ij
x α  regardless of the number of copies that agent j  

receives. We also assume that each agent can only benefit from 

disseminating its own information, but forwarding the information 

that is received from other agents does not bring it any benefit. 

In the IDG, each agent maximizes its own utility given the 

strategies of others. A Nash equilibrium (NE) is defined as a 

strategy profile *g  such that the strategy of each agent i  is a best 

response to the strategies of others: 
* * * *( , ) ( , ), ,  

i i i i i i i i
u u i N

− −
′ ′≥ ∀ ≠ ∀ ∈g g g g g g . (2) 

Here we use 
i−

g  to represent the strategies of all agents other than 

agent i . In addition, a strict NE is a Nash equilibrium such that the 

strategy of each agent i  is a strict best response to the strategies of 

others (with the inequality in (2) being strict for each i N∈ ). As 

we will show in Section 4, a network will always converge to a 

strict NE in the dynamic link formation process, given its 

Therefore, a strict NE characterizes a steady state in the dynamic 

link formation process. However, it should also be noted that since 

strict NE are a subset of NE, all our subsequent results on NE also 

apply to strict NE. 

The social welfare of the IDG is defined to be the sum of 

agents’ individual utilities.  For a strategy profile g , the social 

welfare is given by ( ) ( )
ii N

U u
∈∑≜g g . A strategy profile #g  is 

called socially optimal if it achieves the social optimum, denoted 

by #U , i.e. # # #( ) ( ),  U U U ′ ′≥ ∀ ≠≜ g g g g . 

 

3. EQUILIBRIUM AND EFFICIENCY 
In this section, we first analyze the equilibrium link formation 

strategies of self-interested agents. Next, we explicitly compare the 

social welfare of the IDG at equilibrium with the social optimum. 

The results provide important insights on the efficiency loss 

occurred due to the self-interested behavior of agents in the IDG as 

compared to the case when the agents obediently follow the link 

formation actions dictated by some central designer. 
 

3.1 Equilibrium analysis 
We start by defining several useful concepts for our analysis. 

Definition 2 (Component). A component C  is a set of agents 

such that for any ,i j C∈ , they are connected, while for any 

i C∈  and j C′ ∉ , they are not connected.  

Remark 2: It should be noted that an agent who is not 

connected with any other agents in the network (i.e. an isolated 

agent) also forms a component, which is called as a singleton 

component. Accordingly, a component that is not singleton is 
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called a non-singleton component. Also, a component is called to 

be minimal if and only if there is only one path in ( )cl g  between 

any two agents ,i j C∈ . Given a component, the distance ( , )d i j
g

 

between any two agents i  and j  in it is defined as the number of 

links in a shortest path between them. The diameter of a 

component is thus defined as the largest distance between any two 

agents in it, and the diameter of the network is defined to the 

largest diameter of its components.  

For better illustration, we also define several particular 

networks. A network ( )cl g  is called connected if there is a unique 

component C N=  in ( )cl g . A network ( )cl g  is called empty, 

denoted as eg , if ( ) =cl φg . A network ( )cl g  is called a star 

network if there is an agent i N∈  such that 1, / { }
ij
g j N i= ∀ ∈  

and 0, , / { }
jj
g j j N i′

′= ∀ ∈ .  

It is easy to prove that Nash equilibria always exist in the IDG 

with the formal proof omitted here and relegated to the online 

appendix [9]. In the following proposition, it is further shown that 

under an NE of the IDG, each component is minimal. It should be 

noted that due to the space limit, proofs are omitted and can be 

found in the online appendix [9].  

Proposition 1. Under an NE, each component is minimal. � 

Proposition 1 shows that in an equilibium, agents will not 

make redundant investments on the link formation and hence, each 

connected sub-network (component) in the network is minimal 

with no cycles in it. As we will show in Section 3.2, the social 

optimum in the IDG is always achieved by networks consisting of 

minimal components and hence, the minimal property guarantees 

that the equilibia can frequently achieve the social optimum. 

Proposition 1 characterizes the components in the equilibrium 

network. However, it does not characterize under what conditions 

the network is connected, i.e. there is a unique component in the 

network. The following proposition provides a sufficient condition 

under which the network is connected. 

Proposition 2. The network under each NE is always 

minimally connected if ,
min { / } 1

i j i ij ij
x kα > . � 

Proposition 2 shows that the network will be connected at 

equilibrium when (i) the link formation cost is not too large; (ii) 

the benefit from information is sufficiently large. The properties of 

the network topology at equilibrium (e.g. the shape of the 

topology) depends on the specific values of { }
i i N
x

∈
, ,

{ }
ij i j N
α

∈
 

and ,
{ }
ij i j N
k

∈
. In the rest of this section, we analyze two 

exemplary networks with particular structures in order to obtain 

further insights on the equilibrium topology. 
 

3.1.1 Networks with recipient-dependent costs 
In the first example, we consider the network where 

, / { }
ij j
k k i N j= ∀ ∈ , i.e. the cost of forming a link is exclusively 

recipient specific. This can capture the practical networks in which 

the link formation cost only depends on the type of the recipient. 

For the tractability of the analysis, we assume that , ,
ij

i jα α= ∀  

and focus solely on the heterogeneity of the link formation cost. In 

the following proposition, we show that if the link formation cost 

in the network is not arbitrary but only takes values from a finite 

set 1{ ,..., }Lk k , i.e. there are L  different types of link formation 

costs and 1{ ,..., }, ,L

ij
k k k i j N∈ ∀ ∈ , then the distance between 

any two agents within the same component at equilibrium should 

be no more than 2 2L + . 

Theorem 1. If 
1{ ,..., },L

i
k k k i N∈ ∀ ∈ , then under a strict 

NE *g , the distance between any two agents within the same 

component is at most 2 2L + . � 

The link formation cost thus plays an important role in shaping 

the equilibrium network. If there are only a finite number of 

different link formation costs in the network, then the size of each 

component (measured by the longest distances between agents) 

cannot be arbitrarily large but is upper-bounded by some constant 

value which is independent to the population size. Based on 

Proposition 1 and Theorem 1, the “minimally connected” and 

“short diameter” properties of the equilibria in strategic networks 

are proven. 

As a special case, we prove in the next corollary that when the 

link formation cost is the same for all agents, each component in a 

strict NE is a star, regardless of the values { }
i i N
x

∈
 and ,

{ }
ij i j N
α

∈
. 

Corollary 1. If , ,
ij
k k i j N= ∀ ∈ , then under a strict NE *g , 

each component forms a star topology. � 

Therefore, each component at equilibrium preserves the “core-

periphery” property with one agent staying at the center of the 

component and playing the role of the “connector” who maintains 

links with all other agents for their information dissemination. 
 

3.1.2 Networks with groups 
In the second example we discuss a network where agents are 

divided into groups and agents within the same group have the 

same type. The benefits from information dissemination within the 

same group are higher than the benefits received from information 

dissemination across groups. Also, the cost of forming links within 

a group is lower than the cost of forming links across groups. One 

example of strategic networks where such groups exist is devices 

or processing nodes located in the same area [10]. 

Formally, we consider all agents are divided into Z  different 

groups 
1
, ,

Z
N N… , such that 

1
{ }Z
z z

N N
=

= ∪  and 
z z
N N φ′∩ =  

for any 1 z z Z′≤ < ≤ . For agents i  and j  within the same 

group, the benefit for agent i  to disseminate one unit of 

information to agent j  is 
ij
α α=  and the cost for agent i  to 

form a link to agent j  is 
ij
k k= . Similarly, for agents from 

different groups, the benefit for disseminating one unit of 

information between them is α α<  and the cost of forming a link 

between them is k k> . Here we assume that ,
i
x x i N= ∀ ∈  to 

make our analysis tractable. The following theorem characterizes 

the equilibria in IDG with groups and proves that each non-empty 

network at equilibrium preserves the “core-periphery” property. 

Theorem 2. In the presence of groups, the NE can be 

characterized as follows: 

(i) When (0, / )x k α∈ , the unique equilibrium is eg ; 

(ii) When ( / , / )x k kα α∈ , the unique strict NE consists of 

Z
 
components, where each component only contains agents from 

the same group and forms a star topology; 

5270



(iii) When ( / , )x k α∈ ∞ , each strict NE contains a group 

z
N  and an agent 

z
i N∈  with * 1, / { }

ij z
g j N i= ∀ ∈ . For each 

agent 
z

j N′ ∉ , there is an agent 
z

j N∈  such that * 1
jj
g ′ = . � 

Several examples of the equilibrium topology are illustrated in 

Figure 1 in a network of 10n =  which are divided into 2 groups. 

The number on the node represents the group that each agent 

belongs to. Theorem 2 provides several important insights. First, 

with the exception of empty networks, agents from the same group 

always belong to the same component under a strict equilibrium. 

Hence, the heterogeneity on agents’ types have significant impact 

on the resulting equilibrium, where agents of the same type who 

have high mutual benefits and low connecting cost always get 

closer with each other than agents of different types. Second, each 

non-singleton component in the network still preserves the “core-

periphery” property at equilibrium. There is one group which is the 

core with its agents mutually connected, and agents from other 

groups accessing the network via links maintained by the core 

group. Third, in each component, there is always a central agent 

and all paths within this component initiate from this agent. The 

distance from the central agent to any periphery agent is no more 

than 2. 

           

       (A) /x k α<     (B) ( / , / )x k kα α∈

         

(C) /x k α>  

Figure 1 The examplary Nash equilibria in the network with groups 

3.2 Equilibrium efficiency 

In this section, we analyze the social welfare of the IDG to 

quantitatively study the efficiency of equilibria. First, we 

characterize the socially optimal strategy profiles. Similar to the 

NE, it is easy to prove that each component under a socially 

optimal strategy profile is also minimal. We then have the 

following proposition which characterizes the socially optimal 

network. 

Proposition 3. The network under a socially optimal profile is 

always minimally connected if 
/{ }

max{ min / } 1
i ij ij

i j N iN
x kα

∈∈
> . � 

It should be noted that 
/{ }

max{ min / } 1
i ij ij

i j N iN
x kα

∈∈
>  always 

holds when 
,

min { / } 1
i j i ij ij
x kα > . Hence, we have the following 

theorem which proves that when the link formation cost is the 

same for every agent, i.e. , ,
ij
k k i j N= ∀ ∈ , an NE achieves the 

social optimum as long as it forms a connected network. 

Theorem 3. (i) An NE *g  is socially optimal if there is a 

unique component N  in *( )cl g ; (ii) when 
,

min{ / } 1
i ij ij

i j
x kα > , 

each equilibrium *g  achieves the social optimum. � 

Theorem 3 provides important insights in quantifying the 

efficiency of equilibria. It shows that when the link formation cost 

is not too large, self-interested link formation actions can lead to 

the socially optimum without incurring any efficiency loss. This is 

due to the fact that the network is minimally connected at 

equilibrium and hence, agents form the minimum number of links 

that is enough to help them disseminate information throughout the 

network. Hence, the total link formation cost incurred to agents at 

equilibrium is minimized.  

 

4. DYNAMIC LINK FORMATION 
In the above section, we study the IDG as a static game, where all 

agents make their link formation actions simultaneously. In this 

section, we study the dynamic link formation in which agents learn 

the strategies played by others and asynchronously adapt their 

strategies by playing the best response dynamics. We assume that 

the time is divided into discrete periods with t  being the time 

stamp. In each period t , each agent i  observes the strategy 

profile ( 1)t−g  played in the previous period and adapts its strategy 

to the myopic best response 
*
i
g  such that 

* ( 1) ( 1) 1 *( , ) ( , ), {0,1}   t t n

i i i i i i i i i
u u and

− − −
− −

′ ′ ′≥ ∀ ∈ ≠g g g g g g g . (3) 

Remark 3: When there are multiple best responses for an 

individual agent in one period, we assume that each best response 

strategy has a positive probability to be chosen by the agent. 

We analyze the dynamic link formation process for two 

exemplary IDG models discussed in Section 3. In the analysis, we 

assume that , , ,
ij ij

k k i jα α= = ∀  and ,
i
x x k i= > ∀ . 

First, we prove that the dynamic link formation process 

always converges to a strict equilibrium under both IDG models. 

Theorem 4. In the IDG with recipient-dependent cost and the 

IDG with groups, the best response dynamics always converges to 

a strict equilibrium. � 

Next, we compare the convergence rate in different IDGs. 

Figure 2 shows that the convergence rate (measured in the number 

of periods before convergence) of the best response dynamics 

grows exponentially against the population size n .  

 

Figure 2 The convergence rate of the dynamic link formation process 

5. CONCLUSION 
In this work, we investigated the problem of information 

dissemination and link formation in networks of strategic agents. 

We rigorously determined how the agents’ aspiration to 

disseminate their own information throughout the network impacts 

their interactions and the emerging connectivity/topology between 

them. Our analysis rigorously proved several important properties 

of the networks emerging in equilibrium from such  strategic link 

formation:  “core-periphery”, “minimally connected”, “short 

diameter”. These properties are important because they 

characterize that efficiency and robustness of the resulting 

equilibrium networks. Finally, we proved that agents converge to 

the characterized equilibrium networks using a simple and 

asynchronous dynamic link formation process. 
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