
SOCIALLY-OPTIMAL DESIGN OF CROWDSOURCING PLATFORMS
WITH REPUTATION UPDATE ERRORS

Yuanzhang Xiao, Yu Zhang, and Mihaela van der Schaar

Department of Electrical Engineering, UCLA. Email: yxiao@ee.ucla.edu

ABSTRACT

Crowdsourcing systems (e.g. Yahoo! Answers and Amazon
Mechanical Turk) provide a platform for requesters, who have
tasks to solve, to ask for help from workers. Vital to the proliferation
of crowdsourcing systems is incentivizing the workers to exert high
effort to provide high-quality services. Reputation mechanisms
have been shown to work effectively as incentive schemes in
crowdsourcing systems. A reputation agency updates the reputations
of the workers based on the requesters’ reports on the quality of
the workers’ services. A low-reputation worker is less likely to
get served when it requests help, which provides incentives for
the workers to obtain a high reputation by exerting high effort.
However, reputation update errors are inevitable, because of either
system errors such as loss of reports, or inaccurate reports, resulting
from the difficulty in accurately assessing the quality of a worker’s
service. The reputation update error prevents existing reputation
mechanisms from achieving the social optimum. In this paper, we
propose a simple binary reputation mechanism, which has only two
reputation labels (“good” and “bad”). To the best of our knowledge,
our proposed reputation mechanism is the first that is proven to be
able to achieve the social optimum even in the presence of reputation
update errors. We provide design guidelines for socially-optimal
binary reputation mechanisms.

Index Terms— crowdsourcing, reputation, game theory

1. INTRODUCTION

Crowdsourcing systems, such as Yahoo! Answers and Amazon
Mechanical Turk, provide platforms for a user to elicit collective
efforts from the other users to solve its task. In a typical crowdsourcing
system, a user can either post tasks and request for help as a
requester, or solve the tasks posted by others as a worker. In
some crowdsourcing systems [1][2], the workers are rewarded by
monetary payments from the requesters. The payment is usually
paid when the worker is assigned with the task, instead of after
the worker completes the task. This creates an incentive problem,
namely the worker may want to exert low effort on the task since it
has already been paid. In other systems [3], the servers are rewarded
by the benefit obtained from other users’ services. In such systems
without monetary payment, it is even more difficult to provide the
servers with the incentive to exert high efforts. In summary, the
incentive provision for the servers is vital to the effectiveness of
crowdsourcing systems.

One effective incentive mechanism is the reputation mechanism
[1]–[3]. In a reputation mechanism, there is a reputation agency,
who assigns reputations to all the users based on their behaviors.
If a user exerts high efforts in the past as a server, it will receives

We acknowledge NSF (grant 0830556) for funding this research.

a high reputation as a summary of its good behaviors in the past.
Similarly, a user’s low reputation indicates that it used to exert low
efforts as a server. Since a low-reputation user may get its task served
with low effort, the users have incentives to get high reputation by
exerting high efforts to solve the others’ tasks. Built on this intuition,
the existing reputation mechanisms work well, except when there
are reputation update errors. The reputation update error comes
from two sources. First, a client cannot perfectly assess the service
quality of a server, and hence, will report the service quality as
low to the reputation agency, even when the server actually exert
high effort. Second, the reputation agency may miss the client’s
report on the service quality, or update the reputation in a wrong
way by mistake. In the presence of reputation update errors, the
existing reputation mechanisms [1]–[3] have performance loss that
is increasing with the update error probability. This performance
loss in [1]–[3] partially comes from the restriction of attention on
stationary Markov strategies. As we will see later, once we remove
this restriction, the social optimum can be achieved.

In this paper, we show that the social optimum can be achieved
in the presence of reputation update errors, if we do not restrict
our attention to stationary Markov strategies as in [1]–[3]. In
other words, we allow the users to take different actions given
the same current state at different time instants, which increases
the strategy space to be considered significantly and potentially
complicates the optimal strategy. Nevertheless, we rigorously
prove that under certain conditions, the social optimum can be
achieved by a class of simple reputation mechanisms, namely binary
reputation mechanisms that assign binary reputation labels to the
users. We derive the conditions under which the social optimum can
be achieved, which provide guidelines for the design of reputation
update rules. In addition, we further simplify the optimal strategy
by proving that strategies of a simple structure can be optimal, and
propose an algorithm to construct the optimal strategy.

The rest of the paper is organized as follows. We discuss
prior work in Section 2. In Section 3, we describe the model
of crowdsourcing systems. Then we design the optimal reputation
mechanisms in Section 5. Simulation results in Section 6 demonstrate
the performance improvement of the proposed reputation mechanism.
Finally, Section 7 concludes the paper.

2. RELATION TO PRIOR WORK

The idea of social norm and reputation mechanism was originally
proposed in [4], assuming that there is no reputation update error.
The performance loss of the reputation mechanism in [4] is large
under reputation update errors. Based on the idea in [4], [5][6][7]
did some experiments on different reputation mechanisms. Their
experiment results show that some simple reputation mechanisms
have performance loss under reputation update errors.

[1]–[3][8] rigorously analyzed reputation mechanisms under

5263978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

Table 1. The gift-giving game between a requester and a worker.
high effort low effort

request (b,−c) (0, 0)

reputation update errors. They designed optimal reputation mechanisms
with stationary Markov strategies, and quantifies the performance
loss of such reputation mechanisms under reputation update errors.
We will show that the performance loss can be eliminated by using
reputation mechanisms with nonstationary strategies.

Our paper is the first one that proposes socially optimum
reputation mechanisms under reputation update errors. Although we
model the system as a stochastic game, our results are different from
the folk theorem-type results in repeated games [9] and in stochastic
games [10]. In a practical crowdsourcing platform, the individual
reputations of all the users cannot and are not allowed (due to privacy
considerations) to be known to the users. However, the results in
[9][10] are derived without this informational constraint, and hence,
cannot be applied in our setting.

3. SYSTEM MODEL

Consider a crowdsourcing platform with a set of N users, denoted
by N = {1, . . . , N}. We assume that the number of users N
is displayed on the platform and is known to all the users. Each
user has plenty of tasks to solve, and possesses some resources
valuable to the other users’ tasks. Since the users usually stay
in the platform for a long period of time, we divide time into
periods labeled by t = 0, 1, 2, In each period t, each user,
as a requester, first requests help to solve its tasks. Then, each
user, as a worker, is matched to another user’s task, and chooses
to solve the task with a high or low effort level. A matching is
define as a bijective mapping m : N → N , where user i, as a
worker, is matched to the task requested by user m(i). Since a
user cannot be matched to itself, we denote the set of all possible
matchings as M = {m : m bijective, m(i) 6= i,∀i ∈ N}. A
matching rule is then defined as a probability distribution µ on
the set of all possible matchings M . In this paper, we focus on
the uniformly random matching rule, which satisfies µ(m) =

1/
(
N !

∑N
i=0

(−1)i

i!

)
, ∀m ∈ M .

Once a requester and a worker are matched, they play the
gift-giving game in Table 1, where the row player is the requester
and the column player is the worker. We assume that there is no
cost for requesting for service. Hence, each user requests service in
every period. We normalize the payoffs received by the requester
and the worker when a worker exerts low effort to be zero. When a
worker exerts high effort, the requester gets a benefit of b > 0 and
the worker incurs a cost c ∈ (0, b). We assume that the users are
homogeneous in terms of benefits and costs.

We can see that in the unique Nash equilibrium of the gift-giving
game, the worker will exert low effort, which results in a zero payoff
for both the requester and the worker. We are interested in the
scenarios where b > c, namely exerting high effort leads to the social
optimum. Our goal is to design an incentive scheme such that it is in
their self-interests for the workers to exert high effort.

A powerful incentive scheme is the reputation mechanism,
which exploits the repeated interaction of the requesters and the
workers, and assigns each user a reputation as the summary of its
past behavior. In this paper, we focus on the simplest reputation
mechanisms, namely binary reputation mechanisms, and will show

that binary reputation mechanisms can achieve social optimum.
A binary reputation mechanism assigns binary reputations to the
users. Denote the set of binary reputations by Θ = {0, 1}, and the
reputation of user i by θi, ∀i ∈ N . The reputation profile is defined
as the vector of all the users’ reputations, θ = (θ1, . . . , θN). The
reputation profile contains the users’ private information and is not
known to the users. However, an important statistics, namely the
reputation distribution, can be listed on the platform and observed
by all the users. A reputation distribution is defined as a tuple
s(θ) = (s0(θ), s1(θ)), where s1(θ) =

∑
i∈N θi is the number

of users with reputation 1, and s0(θ) =
∑

i∈N (1 − θi) is the
number of users with reputation 0. Note, however, that when a
worker is matched to a requester, it is informed by the platform of
its requester’s reputation.

As described before, a user always request for service as a
requester because there is no cost to request. Hence, a user only
needs to determine its effort level as a worker. Consequently, we
model each user’s action as a contingent plan of exerting high or
low effort based on its own reputation and the reputation of the
requester matched to it. Formally, each user i’s action, denoted by
αi, is a mapping αi : Θ × Θ → Z, where Z = {0, 1} is the
set of effort levels with z = 0 representing “low effort”. Then
αi(θm(i), θi) denotes user i’s effort level as a worker when it is
matched to a requester with reputation θm(i). We write the action
set as A = {α|α : Θ × Θ → Z}, and the joint action profile of all
the users as α = (α1, . . . , αN).

After each worker exerts effort based on its action, the requester
reports its assessment of the effort level to the platform. The
report is defined as a mapping R : Z → ∆(Z), where ∆(Z)
is the probability distribution over Z. For example, R(1|z) is the
probability that the requester reports “high effort” given the worker’s
actual effort level z. An example report could be

R(z′|z) =

{
1− ε, z′ = z

ε, z′ 6= z
, (1)

where ε ∈ [0, 0.5) is the report error probability. This report
error may be caused by the requester’s inaccurate assessment of the
effort level and by the system error of the platform (e.g. loss of
reports). Since the users are homogeneous, we assume the same
report mapping R for all the users.

Based on the requester’s report, the platform will update the
worker’s reputation based on the reputation update rule. Again,
since the users are homogeneous, we assume that the reputation
update rule is the same for the users. Then the reputation update rule,
denoted by τ , is defined as a mapping τ : Θ × Θ × Z → ∆(Θ).
For example, τ(θ′w|θr, θw, z) is the probability distribution of the
worker’s updated reputation θ′w, given the reputation of the requester
θr , the worker’s own reputation θw, and the requester’s report z. We
focus on a class of reputation update rules defined as

τ(θ′w|θr, θw, z)=


β+

θw
, θ′w = 1, z ≥ α0(θr, θw)

1− β+
θw

, θ′w = 0, z ≥ α0(θr, θw)

1− β−θw
, θ′w = 1, z < α0(θr, θw)

β−θw
, θ′w = 0, z < α0(θr, θw)

,

where α0 is the platform’s recommended action, based on which
the reputation is updated. In the above reputation update rule,
if the reported effort level is not lower than the one specified by
the recommended action, a worker with reputation θw will have
reputation 1 with probability β+

θw
; otherwise, it will have reputation

0 with probability β−θw
.

5264

4. STOCHASTIC GAME FORMULATION

In the section, we first formulate the repeated interaction among the
users in the crowdsourcing platform with reputation mechanisms as
a stochastic game. Then we make some restrictions on the users’
strategies based on the users’ knowledge of the system, and define
the corresponding equilibrium, considering the above restrictions.
Finally, we define the platform designer’s problem.

A stochastic game is described by the set of players, the set of
states with the state transition probability, the set of actions, and
the players’ stage-game payoff functions. We consider the platform
as a player, which is indexed by 0, and define the set of players as
{0} ∪N . The state is defined as the reputation profile θ, and the set
of states as ΘN . The platform’s action is the recommended action,
which is defined in the same way as the users’ actions, namely
α0 : Θ × Θ → {0, 1}. We write the state transition probability
as q(θ′|θ, α0, α), which is the probability that the next state is θ′

given the current state θ, the platform’s recommended action, and
the joint action profile α. Note that the state transition probability
q is determined by the matching rule µ, the report function R,
and the reputation update rule τ . Finally, each user i’s stage-game
payoff function is ui(θ, α0, α), which depends on1 the state θ and
the joint action profile α. We define the platform’s payoff as a
constant u0(θ, α0, α) = 0,∀θ, α0, α, such that it will follow the
platform designer’s decisions on how to choose the recommended
action. Note that the platform designer’s goal (or payoff) is the
social welfare, which will be defined later.

The users interact in the platform repeatedly. Hence, each user
should have a strategy, which is a contingent plan of which action
to take based on the history. The history is the collection of the past
and the current states (i.e. reputation profiles). Denote the history at
period t as ht = (θ0, . . . , θt), where θt is the reputation profile at
the beginning of period t, and the set of public histories at period t
as Ht = (ΘN)t+1. Then each user i’s strategy πi : ∪∞t=0Ht → A
as a mapping from the set of all possible histories to the action set.
Similarly, we define the platform’s recommended strategy as π0 :
∪∞t=0Ht → A. The joint strategy profile of all the users is written as
π = (π1, . . . , πN). We write the set of all strategies and the set of
all strategy profiles as Π and ΠN , respectively. Given the matching
rule µ, the initial reputation profile θ0, the report function R, and the
reputation mechanism (Θ, τ), the recommended strategy π0 and the
joint strategy profile π induce a probability distribution over the set
of all the histories H∞. Taking the expectation with respect to this
probability distribution, each user i receives a discounted average
payoff Ui(θ

0, π0, π) defined as

Ui(θ
0, π0, π) = Eh∞

{
(1− δ)

∑∞
t=0 δtui(θ

t, π0(h
t), π(ht))

}
,

where δ ∈ [0, 1) is the common discount factor of all the users.
The discount factor δ is the rate at which the users discount future
payoffs, and reflects the patience of the users. A more patient user
has a larger discount factor.

Now we make some restrictions on the strategies. First, since
the users are homogeneous, we assume that all the users adopt the
same strategy, namely πi = π,∀i ∈ N . In particular, we write the
symmetric joint strategy profile as π · 1N , where 1N is a vector of
1’s with length N . Note that although all the users adopt the same

1Note that, although the stage-game payoff does not depend on the
recommended action, we write the recommended action α0 as an argument
of the payoff function by the convention of game theory. However, the
recommended action does affect the long-term payoff through the state
transition probability.

action in each period, they will choose different effort levels since
both their own and their requesters’ reputations are different.

Second, since the users know the reputation distributions only,
but not the reputation profiles, we restrict the users’ strategies to
be indifferent in reputation profiles that have the same reputation
distribution. We call such strategies informationally-plausible (IP)
strategies, since it is infeasible for the users to adopt strategies that
require the knowledge of reputation profiles. Formally, we define the
IP strategies as follows.

Definition 1 (IP Strategies) A strategy π is informationally-plausible,
if for all t ≥ 0 and for all ht, h̃t ∈ Ht, we have

π(ht) = π(h̃t), if s(θk) = s(θ̃k), k = 0, 1, . . . , t. (2)

We write the set of all IP strategies as Πf .

In this paper, we focus on symmetric IP strategy profiles.
Finally, since the action set A has 24 = 16 elements, the

complexity of choosing the action is large for the users. Hence, we
consider the strategies that choose actions from a subset B ∈ A, and
define Πf (B) as the set of symmetric IP strategies restricted on the
subset of actions B. We are particularly interested in two subsets
of actions, Aafs , {αa, αf , αs} with three actions. Specifically,
the action αa is the altruistic action, define as αa(θr, θw) =
1,∀θr, θw ∈ {0, 1}, where the worker exerts high effort regardless
of the worker’s and the requester’s reputations. The action αf is the
fair action, define as αf(θr, θw) = 0 if θw > θr and αf(θr, θw) = 1
if θw ≤ θr , where the worker exerts high effort only when the
requester has a higher or equal reputation. The action αs is the
selfish action, define as αs(θr, θw) = 0,∀θr, θw ∈ {0, 1}, where
the worker exerts low effort regardless of the worker’s and the
requester’s reputations.

As we will show later, a pair of a recommended strategy and a
strategy profile (π0, π · 1N) ∈ Πf (Aafs) × ΠN

f (Aafs) can achieve
social optimum at the equilibrium if we design reputation update
rules carefully. The equilibrium is defined as follows.

Definition 2 (Nash equilibrium) A pair of a IP recommended
strategy and a symmetric IP strategy profile (π0, π ·1N) ∈ Πf×ΠN

f

is a Nash equilibrium (NE), if for all θ0 ∈ ΘN and for all i ∈ N ,

Ui(θ
0, π0, π · 1N) ≥ Ui(θ

0, π0, (πi, π · 1N−1)), ∀πi ∈ Π,

where (πi, π · 1N−1) is the strategy profile in which user i deviates
to πi and the other users follow the strategy π.

The goal of the platform designer is to maximize the social
welfare at the equilibrium in the worst case (with respect to different
initial reputation distributions), which provides a much stronger
performance guarantee than maximizing the performance given an
initial reputation distribution and than maximizing the expected
performance. The platform design problem can be formulated as:

Platform Design Problem :

maxτ,(π0,π·1N)∈Πf×ΠN
f

minθ0∈ΘN
1
N

∑
i∈N Ui(θ

0, π0, π · 1N)

s.t. (π0, π · 1N) is a NE.

5. SOCIALLY OPTIMAL DESIGN

The social optimum is b − c, achieved by the workers exerting
high efforts all the time, which is not an equilibrium strategy. In
this section, we will show that under properly designed reputation
mechanisms, the social optimum b − c can be asymptotically
achieved at the NE in the following sense.

5265

Definition 3 (Asymptotically Optimal Reputation Mechanisms)
We say a reputation mechanism (τ, π0(ξ, δ) ∈ Πf (Aafs)) is
asymptotically optimal, if for any small ξ > 0, we can find δ,
such that for all discount factor δ > δ, (π0(ξ, δ), π0(ξ, δ) · 1N) is
a NE and guarantees Ui(θ

0, π0, π0 · 1N) ≥ b − c − ξ, ∀i ∈ N ,
starting from any initial reputation profile θ0.

Note that in the optimal reputation mechanism, the reputation
update rule can be independent of the tolerated performance loss ξ
and the discount factor δ, while the recommended strategy depends
on both ξ and δ. Note also that in the above definition, we require the
user’s strategy to be the same as the recommended strategy. Hence,
the platform can announce the recommended action in each period,
such that the users can follow the recommended action. In this way,
the users do not need to calculate the action to take in each period by
themselves.

Theorem For any reputation update error ε ∈ [0, 0.5), we can
design an asymptotically optimal reputation mechanism. We should
design it such that the following conditions are satisfied:

• Condition 1: β+
1 > 1− β−1 and β+

0 > 1− β−0

• Condition 2: x+
1 , (1− ε)β+

1 + ε(1− β−1) > 1
1+ c

(N−1)b
;

• Condition 3: x+
0 , (1− ε)β+

0 + ε(1− β−0) <
1−β+

1
c

(N−1)b
;

Proof: See [13, Appendix A]. �
The theorem proves that for any reputation update error ε ∈

[0, 0.5), we can design an asymptotically optimal reputation mechanism.
It also shows us how to design it. First, we should give incentive
for the users to exert high effort, by setting β+

θ , the probability that
the reputation goes up when the effort level is not lower than the
recommended one, to be larger than 1−β−θ , which is the probability
that the reputation goes up when the effort level is lower than the
recommended one. Second, for the users with reputation 1, the
expected probability that the reputation goes up when the effort
level is not lower than the recommended one, x+

1 , should be larger
than the threshold specified in Condition 2. Meanwhile, for the users
with reputation 0, the expected probability that the reputation goes
up when the effort level is not lower than the recommended one, x+

0 ,
should be smaller than the threshold specified in Condition 2. Note
that Conditions 2 and 3 imply that x+

1 > x+
0 . In this way, a user will

prefer to have reputation 1.
Given ξ and δ > δ, we can construct the optimal recommended

strategy π0(ξ, δ). The optimal equilibrium strategy is not stationary,
in that given the same state, the actions taken can be different
at different periods. Due to space limitation, we refer interested
readers to [13, Appendix B] for the algorithm of constructing the
recommended strategy. An overview of the optimal recommended
strategy is as follows. If all the users have reputation 1 or 0,
the altruistic action αa or the selfish action αs is recommended,
respectively. If the users have different reputations, the altruistic
action αa or the fair action αf is used, depending on the reputation
distribution, as well as when this reputation distribution occurs.

6. SIMULATION RESULTS
We compare against the state-of-the-art reputation mechanism,
namely the reputation mechanism with optimal stationary Markov
(OSM) strategies in [1]–[3]. In a stationary Markov strategy, the
action to take depends on the current state only, which is independent
of when the current state appears. In contrast, the proposed strategy
depends on the history of states. The same current state may lead

0.01 0.06 0.11 0.16 0.21 0.26 0.31 0.36 0.41 0.46
0

0.2

0.4

0.6

0.8

1

Error probability

N
or

m
al

iz
ed

 s
oc

ia
l w

el
fa

re

proposed
stationary Markov (b=2)
stationary Markov (b=3)
stationary Markov (b=4)
stationary Markov (b=5)

Fig. 1. Social welfare under different reputation update errors.

Table 2. Evolution of states and actions.
Period State (s0, s1) Recommended action Action taken

(OSM/Proposed) (OSM/Proposed) (OSM/Proposed)
0 (10,0)/(10,0) Fair/Selfish Selfish/Selfish
1 (9,1)/(9,1) Fair/Fair Selfish/Fair
2 (7,3)/(7,3) Fair/Altruistic Selfish/Altruistic
3 (6,4)/(4,6) Fair/Fair Selfish/Fair
4 (4,6)/(5,5) Fair/Altruistic Selfish/Altruistic
5 (4,6)/(6,4) Fair/Altruistic Selfish/Altruistic
6 (3,7)/(4,6) Fair/Fair Altruistic/Fair
7 (1,9)/(2,8) Fair/Altruistic Altruistic/Altruistic
8 (1,9)/(1,9) Fair/Fair Altruistic/Fair
9 (2,8)/(1,9) Fair/Altruistic Altruistic/Altruistic

to different actions in different periods. In the simulation of the
optimal stationary Markov strategy, the recommended action (which
is designed to be fixed) is the fair action αf .

We first consider a system with N = 100 users and discount
factor δ = 0.99. In Fig. 1, we compare the social welfare (i.e. the
average payoff), which has been normalized to the social optimum
b − c, of the two reputation mechanisms under different reputation
update errors. We can see from Fig. 1 that as the error probability
grows, the social welfare of the optimal stationary Markov strategy
decreases, and drops to 0 when the error probability is large (e.g.
when ε > 0.4). However, the proposed reputation mechanism
achieves almost full efficiency under all the reputation update errors.

Then, we illustrate how the OSM strategy and the proposed
strategy work differently, by comparing the evolution of the states,
the recommended actions, and the actions taken by the users. We
choose a small number of users, i.e. N = 10, such that the state
evolution is more obvious in the first few periods. The evolution
under the two strategies is shown in Table 2. The first difference
is that in the reputation mechanism with OSM strategies, the
recommended action is fixed and the action taken can be different
from the recommended action. On the contrary, in the proposed
reputation mechanism, the recommended action is not fixed over
time and the action taken is always the same as the recommended
action. The second difference is that in OSM strategies, the actions
taken in different periods are the same as long as the current state is
the same. In contrast, in the proposed strategy, the actions taken can
be different even at the same current state.

7. CONCLUSION
We designed binary reputation mechanisms that can achieve the
social optimum in the presence of reputation update errors. Simulation
results demonstrate the significant performance gain of the proposed
reputation mechanism over the state-of-the-art mechanisms.

5266

8. REFERENCES

[1] Y. Zhang and M. van der Schaar, “Reputation-based incentive
protocols in crowdsourcing applications,” in Proceedings of the
IEEE INFOCOM, 2012.

[2] C.-J. Ho, Y. Zhang, and M. van der Schaar, “Towards social
norm design for crowdsourcing markets,” in Proceedings of the
AAAI HCOMP, 2012.

[3] Y. Zhang, J. Park, and M. van der Schaar, “Rating
Protocols for Online Communities,” to appear in ACM
Transaction on Economics and Computation. Available at:
http://arxiv.org/abs/1101.0272

[4] M. Kandori, “Social norms and community enforcement,”
Review of Economic Studies, vol. 59, no. 1, pp. 63 – 80, 1992.

[5] A. Blanc, Y.-K. Liu, and A. Vahdat, “Designing incentives for
peer-to-peer routing,” in Proceedings of the IEEE INFOCOM,
2005.

[6] M. Feldman, C. Papadimitriou, J. Chuang, and I. Stoica,
“Free-riding and whitewashing in peer-to-peer systems,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 5,
pp. 1010–1019, 2006.

[7] B. Q. Zhao, J. C. S. Lui, and D.-M. Chiu, “Analysis of adaptive
incentive protocols for p2p networks,” in Proceedings of the
IEEE INFOCOM, 2009.

[8] C. Dellarocas, “Reputation mechanism design in online trading
environments with pure moral hazard,” Information Systems
Research, vol. 16, no. 2, pp. 209–230, 2005.

[9] D. Fudenberg, D. K. Levine, and E. Maskin, “The folk theorem
with imperfect public information,” Econometrica, vol. 62, no.
5, pp. 997–1039, 1994.

[10] J. Hörner, T. Sugaya, S. Takahashi, and N. Vielle, “Recursive
methods in discounted stochastic games: An algorithm for
δ → 1 and a folk theorem,” Econometrica, vol. 79, no. 4, pp.
1277–1318, 2011.

[11] D. Abreu, D. Pearce, and E. Stacchetti, “Toward a theory
of discounted repeated games with imperfect monitoring,”
Econometrica, vol. 58, no. 5, pp. 1041–1063, 1990.

[12] G. Mailath and L. Samuelson, Repeated Games and
Reputations: Long-run Relationships. Oxford, U.K.: Oxford
University Press, 2006.

[13] Y. Xiao, Y. Zhang, and M. van der Schaar,
“Appendix for SOCIALLY-OPTIMAL DESIGN
OF CROWDSOURCING PLATFORMS WITH
REPUTATION UPDATE ERRORS,” Available at:
http://www.ee.ucla.edu/~yxiao/AppendixICASSP2.pdf

5267

