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ABSTRACT

There has recently been increased interest in applications of
topology to areas ranging from control and sensing, to social
network analysis, to high-dimensional point cloud data analy-
sis. Here we use simplicial complexes to represent the group
relationship structure in a network. We detail a novel algo-
rithm for simplifying homology and “hole location” compu-
tations on a complex by reducing it to its core using a strong
collapse. We show that the homology and hole locations are
preserved and provide motivation for interest in this reduction
technique with applications in sensor and social networks.
Since the complexity of finding ”holes” is quintic in the num-
ber of simplices, the proposed reduction leads to significant
savings in complexity.

Index Terms— Simplicial complex, homology, simpli-
cial collapse, sensor network, social network

1. INTRODUCTION

There is a growing interest in the practical applications of
topology in many areas, including control and sensing [4, 5,
11], social network analysis [10], and the analysis of point
cloud data [3]. In particular, simplicial complexes have been
useful for representing relationships between objects beyond
the pairwise connections in a graph. However, the combinato-
rial nature of these structures often results in significant com-
putational challenges. For example, the computational com-
plexity of finding topological “holes” in a simplicial complex
can be quintic in the number of simplices [5]. Hence, there is
a need for methods that help mitigate these challenges.

One such approach for simplifying homology computa-
tion is utilizing simplicial collapses, which eliminate redun-
dant parts of the simplicial complex that do not affect the
topological structure (i.e., the homology). Certain trial-and-
error-type collapses have already been exploited in sensor net-
works [12]. In this work, we independently develop a method
of collapsing nearly equivalent to that of [2], called a strong
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collapse; however, unlike [2], we use and keep track of la-
bels for certain objects in the simplicial complex. We further
show that this strong collapse preserves the “locations” of the
topological holes in the complex. We also discuss some char-
acteristics of the reduction in complexity by using a strong
collapse prior to computing homology. And finally, we ad-
dress particular applications of strong collapses relevant to
homology computations and hole location in simplicial com-
plex representations of sensor and social networks.

2. SIMPLICIAL COMPLEXES AND HOMOLOGY

A simplicial complex, i.e., a collection of sets closed under
the subset operation, is a generalization of a graph useful in
representing higher-than-pairwise connectivity relationships.
The elements of any set are called vertices and the set itself
is called a simplex (or k-simplex to denote it is k-dimensional
and has exactly k+1 vertices). Any proper subset ∆ of a sim-
plex Γ is called a face of Γ. A maximal simplex, i.e., a sim-
plex that is not a face of any other simplex, is called a facet
of the complex. The dimension of the simplical complex is
the largest dimension of its facets. One example of a simpli-
cial complex is the representation of the coverage regions in a
sensor network, where the vertices correspond to the sensors
and the simplices represent that the sensors share a coverage
region. Another example is a network of collaborations of
members on a project, where the members and collaborations
correspond to vertices and simplices, respectively.

Note, a k-simplex can be geometrically represented as
the convex hull of k + 1 affinely independent points in k-
dimensional space. Hence, in this geometric realization, a
simplicial complex is a collection of simplices (in a space of
sufficient dimension) that are closed under the subset opera-
tion and that can only intersect other simplices along a face.

Simplicial homology is the study of the homology spaces
on a simplicial complex, i.e., the sequence of vector spaces
{H0(X), H1(X), . . . ,Hd(X)} on a d-dimensional simpli-
cial complex X . The rank of each vector space Hk(X) is
called the kth Betti number of X and is the count of the
distinct (k + 1)-dimensional “holes” in X . A k-dimensional
hole, in the geometric realization, is the empty space bounded
by a collection of (k − 1)-simplices. More accurately, this
hole means there is a (k− 1)-cycle that does not bound. (See
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Figure 1 for an example. A more precise definition can by
found in [7].)

2.1. Labeled Simplicial Complexes

A relation∇ between elements of two sets A and B naturally
induces two simplicial complexes with labeled simplices. For
instance, for every element a ∈ A, one can associate a la-
belled simplex of points in B that are related to the label a,
σa = {b ∈ B : a∇b}. This complex can be denoted as
KA(B,∇). Similarly, there exists the complexKB(A,∇−1).
These labeled simplicial complexes are called conjugate com-
plexes to one another and are defined by this set relation. If
the relation is understood, we can denote these complexes as
KA(B) and KB(A). A classical result by Dowker [6] states
that KA(B) and KB(A) have identical homologies. One ex-
ample of a labeled simplicial complex is the set A of actors
and the set M of movies with the relation m∇a between
a ∈ A and m ∈M if the actor a appeared in movie m. More
examples and other applications can be found in the work of
Atkin [1] and Johnson [8].

For our purposes, we shall refer to one of the two sets
as the vertex set V = {v1, v2, . . . , vn} and the other set as
the label set L = {l1, l2, . . . , lm}. Hence, the complex of
interest is X = KL(V ), which we shall often denote simply
by X , when no confusion can arise. Every label is unique,
i.e., no label represents two unique simplices; however, any
simplex might be multi-labeled. For example, the same actors
might appear in a movie sequel. By definition, all facets are
labeled. We shall denote the conjugate ofX asXc = KV (L).
It should be noted that in this context, conjugation creates a
complex Xc with vertices corresponding the the labels in X ,
and simplex labels corresponding to the vertices in X .

3. STRONG COLLAPSES

We need a few more definitions before proceeding to the main
results of this paper. Two labeled simplices li and lj in L are
said to be q-near to one another if they share a q-dimensional
face. Note, a labeled simplex must be at least q-dimensional
to be q-near another labeled simplex. The (normalized) ec-
centricity of a labeled simplex σ ∈ L is [9]

ecc(σ) =
q̂ − q̌
q̂ + 1

, (1)

where q̂ is the dimension of σ and q̌ is the largest q for which
σ is q-near another labeled simplex. (For an isolated labeled
simplex, we define q̌ = −1.) Since q̂ ≥ q̌ and q̂ ≥ 0, then 0 ≤
ecc(σ) ≤ 1. Note that the eccentricity of a labeled simplex
σ is zero if and only if σ is a face of a larger simplex or if
the simplex labeled by σ has another label in L. Define the
labeled subcomplex X̃ = KL̃(Ṽ ) as that obtained by first
reducing the label set so that no simplex is multi-labeled and
then removing all labels in L with 0 eccentricity. This leaves

Fig. 1. Vertex v is dominated by vertex w. Cycle s bounds in
the topology, whereas cycle t does not bound.

us with a labeled complex where only the facets are labeled
(and only labeled once), such that X̃ = X , Ṽ = V , and
L̃ ⊂ L. We then define a reduction on a labeled simplicial

complex X as Xr =
˜(
X̃c
)c

.

Theorem 1. Hi(X
r) and Hi(X) are isomorphic as vector

spaces for every index i.

The proof of this theorem is a consequence of the previ-
ously stated result from Dowker [6] that conjugate complexes
have isomorphic homology. Interpreted geometrically, this
states that the number of holes in the complex is preserved
by a reduction of a labeled simplicial complex. Recall that
since the labeled simplices L in the original complex are the
vertices in the conjugate complex, then this process of elim-
inating simplices using (̃·) reduces the set of vertices in the
conjugate to L̃ and, consequently, reduces the number of (un-
labeled) simplices there as well. Then in the conjugate, the set

of labeled simplices is again reduced from Ṽ = V to ˜̃V . The
reduction leaves us with a subcomplex of the original com-
plex that preserves the holes. The successive reduction of a
labeled simplicial complex must converge to a stable complex
since every bounded monotone sequence converges.

This approach was developed independently by Barmak
and Minian [2]. In that work, the authors developed a ho-
motopy theory of strong collapses. These collapses occur by
way of the sequential deletion of vertices if the vertex v ∈ V
is dominated by another vertexw ∈ V , i.e., if every facet con-
taining v also contains w (e.g., see Figure 1). This collapse
was streamlined by successively taking the nerve of a simpli-
cial complex, where the nerve happens to be the same as the
conjugate complex if only facets are labeled (although labels
are not tracked).

This collapse is equivalent to the reduction executed by
our approach because every simplex label that is eliminated
in the conjugate complex at each step has eccentricity 0. It is
evident that a vertex v ∈ X is dominated if and only if its cor-
responding simplex in the conjugate vc ∈ Xc has eccentricity
0. Then, when iterated until it converges, our strong collaps-
ing algorithm, found in Section 3.1, collapses the complex
X to its core since the stable limit of the algorithm can have
no 0-eccentricity simplices in the conjugate, and is therefore
minimal.
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A result not found in [2] is that not only are the holes pre-
served, but their “locations” are also preserved, where a hole
location in a simplicial complex is defined to be any of the
shortest-length cycles that does not bound (in the homology
coset or generator class corresponding to that hole inHk(X)).

Theorem 2. For each hole, at least one shortest-length cy-
cle corresponding to each hole’s generator class will remain
after a strong collapse.

Sketch of Proof. The collapse results in the deletion of dom-
inated vertices [2]: If a vertex v is in a shortest-cycle corre-
sponding to a k-hole’s generator class, it can be shown that it
can only be dominated by a vertex w with which it shares no
k-simplices in the cycle. Thus, collapsing v into w collapses
the k-simplices incident to v into k-simplices incident to w
in a one-to-one fashion along (k + 1)-simplices shared by v
and w. Hence, any shortest-length generator of an element of
Hk can be replaced by another generator of the same length
which contains no dominated vertices.

This theorem shows that collapsing a network via our al-
gorithm preserves not only the homology of the complex, but
also the location and size of the features which determine its
topology. This is relevant when the topological location of
a hole, as it is defined here, has significance in the network.
In the sensor networks setting, the algorithm preserves hole-
location, providing a reduced representation of the network
that retains the topological location of uncovered areas so that
they may be found and repaired. This scenario is covered in
more detail in Section 4.1. In the social network setting, this
corresponds to preserving a shortest path between any two in-
dividuals remaining in the complex after the collapse. Since
the collapse maintains those individuals most vital to the net-
work’s topology, this is an indicator of the core entities bind-
ing the network together, as detailed in the example in Section
4.2.

Before presenting our algorithm to execute this approach,
we comment on the reduction in complexity due to a strong
collapse. Since the strong collapse process reduces the num-
ber of simplices in a given complex, the computation of a
combinatorial invariant like homology (or hole location) ben-
efits greatly from it. For a labeled d-dimensional simplicial
complex with n vertices and m labels, the algorithm in Sec-
tion 3.1 takes on the order of d(n2 +m2) operations for each
iteration. This low cost potentially leads to a significant re-
duction in complexity as the homology computation can be
quintic in the number of simplices. [5]

To show the dramatic effect on time complexity of a
strong collapse on homology calculations in this scenario, we
generate 100 random (Erdős-Rényi) graphs at each of 25 dif-
ferent average node degrees and then use the flag complexes
of the graphs (i.e., the complex generated by a list of every
clique of every size in the graph) for geometric realizations of
the simplicial complexes. In Figure 2, we show the log aver-
age time to compute the homology of the original simplicial

Fig. 2. Time complexity of homology computations and time
complexity of a strong collapse and homology computation
of the core

complex realizations compared with the time taken to com-
pute the strong collapse and the homology of the (reduced)
core of the complex.

3.1. Our strong collapsing algorithm

To execute this reduction, we first construct an m × n in-
cidence matrix ML,V (X) = [mij ] for a labeled simplicial
complex X = KL(V ) with L = {l1, l2, ..., lm} and V =
{v1, v2, ..., vn}, where

mij =

{
1 : li∇vj
0 : else

(2)

Note that the incidence matrix for the conjugate complex Xc

is simply the transpose, i.e., MV,L(Xc) = MT
L,V (X). The

algorithm is as follows:

1. Sort labels L so that the dimension of simplices is
monotone increasing to obtainLs = {ls1 , ls2 , . . . , lsm}.

2. For each row i in MLs,V (X), determine ecc(lsi) using
(1) (this is done with the dot product with rows > i).

− If ecc(lsi) is zero, mark label si for removal.

3. L̃s is the new label set with all zero-eccentricity labels
removed, Ṽ = V is the new vertex set, ML̃s,Ṽ

(X) is
the new incidence matrix.

4. Repeat steps 1-3, interchanging the notation of vertices
and labels above and using the transpose of the current
incidence matrix.

5. Both the label and vertex set have been reduced to ˜̃L
and ˜̃V and the complex reduced to X1

∆
= Xr ⊂ X

from Theorem 1. Iterate steps 1-4, until Xj = Xj−1.

This final simplicial complex Xn is the core after strong
collapsing.
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(a) Original Sensor Network (b) Reduced Sensor Network

Fig. 3. Strong collapse of the simplicial complex representa-
tion of sensor coverage

4. APPLICATIONS

4.1. Sensor Networks

Topological approaches have proven useful in distributively
detecting and autonomously repairing gaps in sensor cover-
age for sensors that lack location information [4, 11]. In
this scenario each vertex corresponds to a sensor and each
simplex represents the coverage overlap between the sensors
associated with the vertices of the simplex. Hence a two-
dimensional hole in this simplicial complex representation
corresponds to a gap in coverage inside the sensor field (see
Figure 3(a)).

The holes in the network need to be found, localized, and
corrected. The overall computational complexity of this pro-
cess depends on the number of 1-simplices (edges) and 2-
simplices (triangles) in the complex. As we have shown in
Theorem 2, a strong collapse of this simplicial complex will
reduce the number of vertices (and therefore the number of
1- and 2-simplices) while preserving the hole locations rele-
vant to the sensor coverage gaps, thereby leading to a signif-
icant reduction in complexity. Figure 3(b) shows the core of
the original complex after the strong collapse and shows that
the existing holes and the shortest-length cycles locating the
holes are preserved. Clearly, the sensors corresponding to the
removed vertices are still being used in the coverage, but they
are not needed in locating the coverage holes.

4.2. Social Networks

Simplicial complexes have long been used to represent group
structure in social networks [1]. In particular, it was recently
shown that the vertices (corresponding to authors) incident
to the hole locations in a simplicial complex representing the
co-authorship collaborations have interesting properties such
as high centrality statistics [10]. In this work, a simplicial
complex was constructed from the publications of academia,
industry, and government scientists in the Communications
& Networks Collaborative Technology Alliance (C&N CTA)
program.1 The data set consists of 960 publications by 518

1http://www.arl.army.mil/www/default.cfm?page=390

(a) Original Network (b) Reduced Network

Fig. 4. The C&N CTA coauthorship network and its core;
in each visualization there are 16 components with 24 2-
dimensional holes.

authors, which provides a natural relation between the set of
authorsA and the set of papers P , inducing a simplicial com-
plex KP(A) where the vertices correspond to authors and the
labeled simplices correspond to papers with the vertices of
each labeled simplex identifying the authors of each paper
(see Figure 4(a)).

A strong collapse on the C&N CTA collaboration net-
work, shown in Figure 4(b), sequentially eliminates papers
and authors that are not critical to the underlying topology.
The vertices retained by this strong collapse are predomi-
nantly principal investigators in the program, i.e., the most
qualitatively important vertices in the complex. For example,
the papers written by a graduate student would almost always
be coauthored with the student’s advisor. Hence, the vertex
corresponding to that student, being dominated by the vertex
corresponding to his or her advisor, would not remain in the
core. Similarly, a paper published by a subgroup of a larger
publishing group also does not survive as a labeled simplex.
The core, then, is left with the 67 relevant coauthors and the
fundamental collaborations (in this case, 78 papers) that de-
termine the network structure.

5. SUMMARY AND CONCLUSION

Simplicial complexes are valuable tools for analyzing net-
work data, but extracting topological information from them
can be expensive. We develop an algorithm for strong col-
lapsing that reduces a complex through vertex deletion down
to a core complex that maintains its topological structure and
describe an algorithm executing this reduction. Moreover,
this reduction maintains the location of holes within the net-
work. For sensor networks, detecting and locating the sensors
nearby the hole can assist in coverage repair. For collabora-
tion networks, a strong collapse identifies the authors who are
most central to the connections in the network. Furthermore,
we demonstrate that in practice, this algorithm reduces the
complexity of computing the homology of networks dramat-
ically, thus making it a valuable tool in the field of computa-
tional topology.
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