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ABSTRACT

A critical task in smart grid is to gain situational awareness by per-
forming state estimation. In this paper, we consider the problem of
placing a type of special sensors, called Phasor Measurement Units
(PMU), to optimize the performance and convergence of state esti-
mation. We derive a metric to evaluate how the placement impacts
the convergence and accuracy of state estimation solved by Gauss-
Newton (GN) algorithm. Using the proposed metric, we formulate
and solve the placement problem as a semi-definite program (SDP).
Simulations of the IEEE 30 and 118 systems corroborate our analy-
sis, showing that the proposed placement stabilizes and accelerates
state estimation, while maintaining optimal estimation performance.

Index Terms— Optimal placement, convergence, estimation

1. INTRODUCTION
Power system state estimation (PSSE) using non-linear measure-
ments from the Supervisory Control and Data Acquisition (SCADA)
systems is plagued by numerical issues. With the GPS technology,
a new type of sensors called Phasor Measurement Units (PMU) de-
ployed in the Wide-Area Measurement System (WAMS) can nowa-
days provide synchronized voltage and current phasor readings at
each instrumented bus (i.e., substation), benefiting greatly state esti-
mation [1] because it becomes a inear least squares problem [2].

Since PMU devices are expensive, their placements are strategi-
cally optimized to reap the greatest benefits in terms of observabil-
ity [3] under a certain budget [4, 5]. When the system is observ-
able, the state becomes uniquely identifiable from the corresponding
measurements [6]. There is vast literature on minimizing the deploy-
ment cost under the observability constraint (see e.g. [7–17]). These
works are usually formulated as integer programs with different cost
functions and solved via a variety of numerical techniques.

The PMU placement can also be optimized with respect to estima-
tion accuracy [18–21]. For example, [19] uses a two-stage approach
that first guarantees observability and then refines the placement for
estimation performance. In [22, 23], instead, PMUs are placed iter-
atively on buses with the largest errors (individual or sum), until a
cost budget is met. A greedy method was proposed in [20] for PMU
placement by minimizing the estimation errors of the augmented
PSSE in polar coordinates using voltage and linearized power in-
jection measurements. The same problem is solved via convex re-
laxation in [21] using Cartesian coordinates for PMU data. The mu-
tual information between sensor measurements and state vector was
mentioned in [24] as a unified metric of observability and accuracy.

In light of the increasing interest in using hybrid measurements
from both PMU and SCADA systems, we revisit the problem of op-
timizing the PMU placement in order to account also for the con-
vergence of the iterative algorithm in state estimation when SCADA
data are used [25]. The question we try to answer in this paper is how
the PMU placement affects the stability and rate of convergence of
PSSE, and whether a judicious placement can further stabilize and
accelerate state estimation while enhancing its accuracy.

The contribution of this paper is the derivation of the Joint Ac-
curacy and Convergence (JAC) metric to evaluate the performance
and robustness of the hybrid PSSE for a given sensor placement. We
also optimize the PMU placement with respect to the JAC metric via
semidefinite programming (SDP). Finally, we numerically show the
performance of the proposed placement with alternative designs.

2. POWER SYSTEM STATE ESTIMATION
We consider a power grid withN buses (i.e., substations), represent-
ing interconnections, generators or loads. They are denoted by the
set N , {1, · · · , N}, which form the edge set E , {(n,m)} with
cardinality |E| = L, with {(n,m)} denoting the transmission line
between n and m. Furthermore, we define N (n) , {m : (n,m) ∈
E} as the neighbor of bus n and let Ln = |N (n)|. The Energy Man-
agement Systems (EMS) at control centers collect measurements on
certain buses and transmission lines to estimate the state of the power
system, i.e., the voltage phasor Vn ∈ C at each bus n ∈ N . In
this paper, we consider the Cartesian coordinate representation using
the real and imaginary components of the complex voltage phasors
v = [<{V1}, · · · ,<{VN},={V1}, · · · ,={VN}]T .

2.1. Measurement Model and State Estimation
Given that there are 2 complex injection measurements at each bus,
and 4 complex flow measurements associated with each line, which
amount to twice as many real variables, the ensemble of all measure-
ments is of length M = 4N + 8L and represented by an aggregate
vector partitioned into four sections z = [zTV , z

T
C , z

T
I , z

T
F ]T , con-

taining the length-2N voltage phasor zV and power injection vec-
tor zI at bus n ∈ N , the length-4L current phasor zC and power
flow vector zF on line (n,m) ∈ E at bus n. Defining the power
flow equations f(·)(v) in Appendix A and letting v̄ be the true sys-
tem state, the individual set z(·) = f(·)(v̄) + r(·) contains obser-
vations corrupted by measurement noise r(·) that arises from in-
strumentation imprecision with zero mean and a covariance matrix
R , E{rrT }. The combined noisy measurement model is

z = f(v̄) + r, (1)

where r = [rTV , r
T
C , r

T
I , r

T
F ]T is the aggregate noise and f(v) =

[fTV (v), fTC (v), fTI (v), fTF (v)]T . In practice, the collected observa-
tions are a subset of z in (1). For convenience, we introduce an
appropriate M ×M) diagonal mask J having 1 on its diagonal if
and only if that measurement is collected, giving

c = Jf(v̄) + Jr. (2)

Assuming R = diag [RV ,RI ,RI ,RF ] with R(·) = σ2
(·)I for

some σV , σC , σI and σF , the state is then estimated as [26, 27]

v̂ = arg min
v∈V

‖c̃− f̃(v)‖2, (3)

where c̃ = R−
1
2 c and f̃(v) = R−

1
2 Jf(v) are the pre-whitened

counterparts of c and f(v), and V is the state space. For discussions,
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we let c̃ , [c̃TV , c̃
T
C , c̃

T
I , c̃

T
F ]T and J , diag[JV ,JC,JI ,JF ] where

JV , JC , JI and JF are the masks for each type of measurement.
The Jacobian F̃(v) = R−

1
2 Jdf(v)/dvT = R−

1
2 JF(v) can be

computed from F(v) , df(v)/dvT given in Appendix A.

2.2. Estimation Performance using Gauss-Newton Algorithm
The Gauss-Newton (GN) algorithm is typically used to solve (3)

vk+1 = vk + dk, k = 1, 2, · · · (4)

with an initializer v0 and the iterative descent

dk =
[
F̃T (vk)F̃(vk)

]−1

F̃T (vk)
[
c̃− f̃(vk)

]
. (5)

Because PMUs directly measure the state, it is natural to exploit
them as a good initializer. Here, we propose to choose the initializer
v0 matching PMU measurements wherever available, with the rest
provided by an arbitrary initializer sV (e.g., a stale or nominal esti-
mate). We define the PMU placement vector V , [V1, · · · ,VN ]T

with Vn ∈ {0, 1} indicating whether the n-th bus has a PMU and
JV = I2 ⊗ diag(V). The initializer is then expressed as

v0(V) = JVzV + (I2N − JV)sV . (6)

Due to the non-convex nature of the problem, there are multiple
fixed points v? of the update in (4) satisfying the first order condition

F̃T (v?)
(
c̃− f̃(v?)

)
= 0, (7)

where the estimate v̂ in (3) corresponds to one of them. Thus, the
convergence of the iterate vk to v̂ has been a critical issue in PSSE
because it is sensitive to the initializer v0(V). If the iterate con-
verges to the estimate limk→∞ vk = v̂, the estimation error is
bounded as limk→∞

∥∥vk+1 − v̄
∥∥ ≤ ‖v̂ − v̄‖. If r in (1) is Gaus-

sian, the solution v̂ in (3) is the Maximum Likelihood (ML) estimate,
whose error covariance is bounded by the Cramér-Rao Bound (CRB)

E
[
‖v̂ − v̄‖2

]
≥ Tr

[
(F̃T (v̄)F̃(v̄))−1

]
, (8)

where F̃T (v̄)F̃(v̄) is the Fisher Information Matrix (FIM), which
depends on the measurement model and the state of the system v̄.

3. AN INTRINSIC METRIC FOR PMU PLACEMENT

Given that the selection J affects the algorithm convergence and
estimation performance, a typical criterion is to guarantee system
observability [6]. Here we assume that SCADA measurements are
given and thus JI ,JF are known, and focus on the design of PMU
placement JV ,JC . Thus, we are particularly concerned with cap-
turing the convergence and accuracy in an appropriate metric that
also reflects the system observability, and further use that metric to
optimize our PMU placement by seeking a deployment that jointly
lowers the bound in (8), excludes solutions that make the state unob-
servable, and stabilizes and accelerates the algorithm convergence.

3.1. System Observability
Observability analysis is typically performed using the load flow
model [28], and recently the PMU model [7–17, 21]. The usual
way [6] is to examine the invertibility of the Jacobian F̃(v), which
requires the GN Hessian matrix to be invertible for all v ∈ V, i.e.,

β = inf
v∈V

λmin

[
F̃T (v)F̃(v)

]
> 0, (9)

where λmin[·] represents the minimum eigenvalue. Obviously this
observability metric depends on the PMU placement JV and JC .
If each installed PMU captures the voltage and all incident current
measurements on that bus as in [21], JC is determined by JV . Then
finally, the GN Hessian is decomposed into two components1

F̃T (v)F̃(v) = P(V) + S(vvT ), (10)

where P(·) : R2N → R2N×2N depends on the PMU placement V

P(V) =

N∑
n=1

Vn

(
I2 ⊗ eneTn

σ2
V

+
HT
I,nHI,n + HT

J,nHJ,n

σ2
C

)
,

and S(·) : R2N×2N → R2N×2N depends on the SCADA data

S(V) =HT
I

(
JIRIJ

T
I ⊗V

)
HI + HT

F

(
JFRFJTF ⊗V

)
HF ,

where HI , HF , HI,n, HJ,n are defined in (23) in Appendix A.

Remark 1. Note that the observability metric β can also be an accu-
racy metric Tr

[
(F̃T (v̄)F̃(v̄))−1

]
≥ λ−1

min

[
F̃T (v̄)F̃(v̄)

]
> 1/β.

Clearly, β is an important metric for PMU placement from the
observability and accuracy perspective. Next, we show that β in fact
partially contributes to the metric we propose for PMU placement
that also determines the numerical stability and convergence rate.

3.2. Algorithm Convergence
To study the convergence limk→∞ vk = v̂, we prove the following.

Lemma 1. The error
∥∥vk+1 − v̂

∥∥ at the (k+1)-th iteration satisfies∥∥∥vk+1 − v̂
∥∥∥ ≤ 1

2

√
ωk
β

∥∥∥vk − v̂
∥∥∥2 +

√
2ε?
√
ωk

β

∥∥∥vk − v̂
∥∥∥

where ωk =
(
vk − v̂

)T
M
(
vk − v̂

)
/
∥∥vk − v̂

∥∥2 is a Rayleigh
quotient of M , S(I2N ) in (10) and ε? = ‖z− f(v̂)‖.

Proof. See Appendix B.
Lemma 1 relates ωk with the error dynamics. Although ωk can be

easily bounded by the largest eigenvalue of M, this is a pessimistic
bound that ignores the dependency of vk on v0 and hence implicitly
on the placement V . Without loss of generality, we denote an upper
bound ω for all k and discuss how to link ω with V explicitly later.

Theorem 1. [29, Theorem 1] Given an upper bound ωk ≤ ω for all
k and suppose ε?

√
2ω < β, then vk converges lim

k→∞

∥∥vk − v̂
∥∥ = 0

as long as
∥∥v0(V)− v̂

∥∥ ≤ 2
√
β/ω − 2

√
2ε?/
√
β.

Theorem 1 suggests that when ω is large (i.e., the Jacobians ex-
hibit large fluctuations) and β is small (i.e., FIM in (8) is numeri-
cally singular), one needs to initialize rather close to v̄ for conver-
gence. Fortunately, we obtain an optimal PMU placement later that
can ameliorate the convergence behavior by maximizing the joint
accuracy-convergence (JAC) metric proposed below

ρ? =
√
β/ω, (JAC metric) (11)

where β is defined in (9) and ω is the upper bound in Lemma 1. Note
that 1/ρ? is a measure of the local convergence rate of the algorithm

1The derivation is tedious but straightforward from (9) and (23) and thus
omitted here due to limited space.
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Fig. 1. MSE curves for the IEEE 30 (left) and 118 (right) systems.

when ε? is small. Hence, this metric reflects the numerical stability
of the algorithm via ω, and the estimation accuracy via β, both of
which depend on PMU placement. The greater the JAC metric, the
more robust to initialization (numerical stability) and the faster the
GN algorithm converges. To formulate the PMU placement problem,
we examine below how V affects this JAC metric ρ? more precisely.

4. OPTIMAL PMU PLACEMENT

4.1. Effects of the PMU Placement on β and ω

We have established the expression of β in relation to V in (10),
which however requires a complicated search over v ∈ V. For sim-
plicity, the common practice is to replace the search by substituting
a nominal state vnom = [1T ,0T ]T as in [21]. On the other hand, the
maximum ω requires analyzing the evolution of the Rayleigh quo-
tients ωk in Lemma 1, which in fact can be easily bounded by the
largest eigenvalue of M. However, this is a pessimistic bound that
ignores the structure of vk resulted from the initializer v0(V), which
neglects the effects of PMU placement. Assuming that the algorithm
makes progress at each iteration such that ‖vk− v̂‖ is contracting, a
natural choice for ω in the JAC metric is to bound the first Rayleigh
quotient ω0 by an appropriate PMU deployment.

Thus next, we use the upper bound of ω0 as the surrogate max-
imum ω for the JAC metric in order to optimize our PMU place-
ment. If the PMUs are accurate, then zV ≈ v̄ ≈ v̂ and therefore,
v0(V)− v̂ ≈ (I2N − JV) (sV − v̂), which implies that

ω0 ≈
(
v0 − v̂

)T
(I2N − JV)T M (I2N − JV)

(
v0 − v̂

)
(v0 − v̂)T (I2N − JV)T (I2N − JV) (v0 − v̂)

. (12)

By the idempotence (I2N − JV) = (I2N − JV)2 in the numerator,

the maximum is ω , λmax

[
(I2N − JV)T M (I2N − JV)

]
≥ ω0.

4.2. Problem Formulation and Solution

We have shown the effects of PMU placement V on ω and β. Thus
given a PMU budget NPMU, the optimal design aims at maximizing

max
V

λmin

[
P(V) + S(vnomvTnom)

]
λmax

[
(I2N − JV)T M (I2N − JV)

] (13)

s.t. JV = I2 ⊗ diag(V), 1TNV = NPMU, Vn ∈ {0, 1}.

To avoid solving this complicated eigenvalue problem with integer
constraints, we relax (13) by converting the integer constraint Vn ∈

{0, 1} to a convex constraint 0 ≤ Vn ≤ 1, and re-formulate the
problem via linear matrix inequalities using two dummy variables

max
V,β,ω

β/ω, s.t. P(V) + S(vnomvTnom) � βI2N (14)[
ωI2N M

1
2 (I2N − JV)

(I2N − JV)TM
T
2 I2N

]
� 0

JV = I2 ⊗ diag(V), 1TNV = NPMU,V ∈ [0, 1]2N

In general, this is a quasi-convex problem that can be solved in a
globally optimal fashion via the classical bisection method by per-
forming a sequence of semidefinite programs (SDP) feasibility prob-
lems [30]. Fortunately, since the objective (14) is a linear fractional
function, one can use the Charnes-Cooper transformation [31], and
re-formulate (14) equivalently as a single SDP instead.

Proposition 1. By letting γ = 1/ω, κ = β/ω and ξ = V/ω, the
global optimum solution to (14) can be determined by

max
ξ,κ,γ

κ s.t. P(ξ) + γS(vnomvTnom) � κI2N (15)[
I2N M

1
2 (γI2N − Iξ)

(γI2N − Iξ)TM
T
2 γI2N

]
� 0

Iξ = I2 ⊗ diag (ξ) , 1TNξ = NPMUγ, 0N � ξ � γ1N ,

whose solution is mapped to the problem in (14) via V? = ξ?/γ?.

The solution above may not have binary entries. Therefore we set
the largest NPMU values in V? to 1 and others to 0 as in [21]. Note
that this optimization is solved once off-line, and the effects of such
placement on the convergence and accuracy of the state estimation
is illustrated in the simulations presented next.

5. SIMULATIONS

We illustrate the convergence and MSE performance using different
placements, where MSE = E

∥∥vk − v̂
∥∥2/N for each iteration k.

We compare our optimal design against a random placement and the
E-optimal scheme2 in [20, 21] that solely optimizes the estimation
accuracy via the FIM in (8). The simulation uses the IEEE 30 and
118 systems in MATPOWER 4.0. The measurements are generated
with independent errors R = σ2I and σ2 = 10−4 and we use 50%
of all SCADA measurements chosen at random.

We compare the MSE curves against the state estimation iteration
k for each placement with NPMU = 5 for the IEEE-30 bus system
and NPMU = 20 for the IEEE-118 system (17% installation) in Fig.
1. To verify the robustness to numerical stability and the conver-
gence rate, the MSE curves are averaged over 100 runs. For each
run, we generate an independent placement for the random scheme
that guarantees system observability [15], and use a non-informative
initializer sV = [1TN+0.1εT ,0TN ]T perturbed by a Gaussian random
vector ε with a covariance E

[
εεT

]
= I2N . We keep the imaginary

part unperturbed considering that voltage phases are usually small.
It is seen in Fig. 1 that if there are no PMU installed, it is possible

that the algorithm does not converge due to bad initializations. In
contrast, the proposed scheme converges stably to the ML estimates
even under 10% perturbation. The performance of random place-
ment is not stably guaranteed because it diverges for the large scale
118-bus system in Fig. 1. Consistent with Theorem 1, since the

2Among the A, M , D-optimal designs in [20, 21], we choose E-optimal
design because of the common objective in maximizing β. These designs
provide similar performances to E-optimal and hence are not repeated.
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noise variance σ2 is small, the algorithm asymptotically converges
quadratically for the optimal and the E-optimal placement, but the
convergence rates are very different in both figures. Although the
MSE performances after convergence remain comparable, the opti-
mal placement considerably accelerates the convergence compared
to the random and E-optimal placement.

6. CONCLUSIONS
In this paper, we propose a useful metric, referred to as JAC, to eval-
uate the convergence and accuracy of hybrid PSSE for a given sensor
deployment, where PMUs are used to initialize the Gauss-Newton it-
erative estimation. We optimize our placement strategy with respect
to the JAC metric via a simple SDP, and confirm numerically the
convergence and estimation performance of the proposed scheme.

A. POWER FLOW EQUATIONS AND JACOBIAN MATRIX

The matrix Y = [−Ynm] includes line admittances Ynm = Gnm +
iBnm, (n,m) ∈ E and shunt admittances Ȳnm = Ḡnm + iB̄nm of
the line (n,m) ∈ E , and self-admittance Ynn = −

∑
m 6=n(Ȳnm +

Ynm). Using en = [0, · · · , 1, · · · , 0]T , we define the following

Yn , eneTnY, Ynm , (Ynm + Ȳnm)eneTn − YnmeneTl . (16)

Letting Gn = <{Yn}, Bn = ={Yn}, Gnm = <{Ynm} and
Bnm = ={Ynm}, we further define the following matrices

NP,n ,

[
Gn −Bn

Bn Gn

]
NQ,n , −

[
Bn Gn

−Gn Bn

]
EP,nm ,

[
Gnm −Bnm

Bnm Gnm

]
EQ,nm , −

[
Bnm Gnm

−Gnm Bnm

]
CI,nm ,

[
Gnm 0

0 −Bnm

]
CJ,nm ,

[
Bnm 0

0 Gnm

]
.

The SCADA systems collect the active/reactive power injection
(Pn, Qn) at bus n and flow (Pnm, Qnm) at bus n from line (n,m)

Pn = vTNP,nv, Qn = vTNQ,nv, (17)

Pnm = vTEP,nlv, Qnm = vTEQ,nlv. (18)

We stack these functions in the power flow equation vectors

fI(v) = [· · · , Pn, · · · , · · · , Qn, · · · ]T (19)

fF (v) = [· · · , Pnm, · · · , · · · , Qnm, · · · ]T . (20)

The WAMS collects the voltage phasor (<{Vn},={Vn}) at bus n
and the current phasor (Inm, Jnm) at bus n on line (n,m)

Inm = (12 ⊗ en)T CI,nlv, Jnm = (12 ⊗ en)T CJ,nlv, (21)

where ⊗ is the Kronecker product, and stacks them as

fV(v) = v, fC(v) = [· · · , Inm, · · · , · · · , Jnm, · · · ]T . (22)

The Jacobian F(v) can then be derived from (21), (17) and (18) as

F(v) =
[
I2N HT

C HT
I
(
I2N ⊗ v

)
HT
F
(
I4L ⊗ v

)]T
, (23)

where HI ,
[
· · · ,NP,n + NT

P,n, · · · ,NQ,n + NT
Q,n, · · ·

]T
,

and HF ,
[
· · · ,EP,nl + ET

P,nl, · · · ,EQ,nl + ET
Q,nl, · · ·

]T
and

HC ,
[
· · · ,HT

I,n, · · · , · · · ,HT
J,n, · · ·

]T
, HI,n , SnCI,n with

CI,n ,
[
· · · ,CT

I,nl, · · ·
]T

and HJ,n , SnCJ,n with CJ,n ,[
· · · ,CT

J,nl, · · ·
]T

using Sn , ILn ⊗ (12 ⊗ en)T .

B. PROOF OF LEMMA 1
We first prove that the Jacobian F̃(v) satisfies

∥∥∥F̃(v)− F̃(v′)
∥∥∥2 ≤

(v − v′)
T

M (v − v′) with M = S(I2N ) defined in (10). Using

F̃(v)− F̃(v′) =


02N×2N

04L×2N

[R
− 1

2
I JI ⊗ (v − v′)T ]HI

[R
− 1

2
F JF ⊗ (v − v′)T ]HF

 (24)

together with the norm inequality ‖ · ‖ ≤ ‖ · ‖F and ‖·‖2F =

Tr
(
(·)T (·)

)
and the property of Kronecker products, we have∥∥∥F̃(v)− F̃(v′)
∥∥∥2
F

= Tr
[
HT
I

(
JIR

−1
I JTI ⊗ (v − v′)(v − v′)T

)
HI
]

+ Tr
[
HT
F

(
JFR−1

F JTF ⊗ (v − v′)(v − v′)T
)

HF
]
.

Using the property of trace operators, the sub-matrices of HI and
HF in (23), we can express the above norm by expanding the Kro-
necker product ⊗ and re-arrange the summation into M = S(I2N )∥∥∥F̃(v)− F̃(v′)

∥∥∥2
F

= Tr
[
(v − v′)(v − v′)TM

]
(25)

= (v − v′)TM(v − v′). (26)

Using this result we are now ready to prove Lemma 1. We follow
the same derivations in [29, Lem. 2] to obtain

vk+1 − v̂ = F̃†(vk)
[
F̃(vk)

(
vk − v̂

)
+ f̃(v̂)− f̃(vk)

]
+
[
F̃†(vk)− F̃†(v̂)

] (
c̃− f̃(v̂)

)
. (27)

The first term can be written with the mean-value theorem and (23)

F̃(vk)
(
vk − v̂

)
+ f̃(v̂)− f̃(vk)

=

∫ 1

0

[
F̃(vk)− F̃

(
v̂ + t(vk − v̂)

)](
vk − v̂

)
dt

=
1

2

[
F̃(vk)− F̃(v̂)

] (
vk − v̂

)
.

Then the first term in (27) can be bounded as

‖F̃(vk)
(
vk − v̂

)
+f̃(v̂)−f̃(vk)‖ ≤ 1

2
‖F̃(vk)−F̃(v̂)‖‖vk−v̂‖.

From [32, Lem. 1], part of the second term in (27) is bounded as

‖F̃†(vk)− F̃†(v̂)‖ ≤
√

2‖F̃†(vk)‖‖F̃†(v̂)‖‖F̃(vk)− F̃(v̂)‖.

Using the result in (25), by substituting the above bounds back to
(27) and letting ε? = ‖z− f(v̂)‖, the recursion (27) is bounded as∥∥∥vk+1 − v̂

∥∥∥ ≤ (∥∥vk − v̂
∥∥

2
√
β

+

√
2ε?
β

)√
(vk − v̂)TM(vk − v̂).

Let ωk =
(
vk − v̂

)T
M
(
vk − v̂

)
/
∥∥vk − v̂

∥∥2 be the Rayleigh
quotient of M in iteration k. Then the quadratic form becomes
(vk − v̂)TM(vk − v̂) = ωk

∥∥vk − v̂
∥∥2, which leads to Lemma 1.
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