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ABSTRACT

In this work, we study the problem of energy storage management
with renewable energy integration by designing online control
policy to minimize the long-term time-averaged cost. We take into
account system input dynamics, and incorporate the batter operation
cost for energy storage into the control optimization. Applying
Lyapunov optimization technique, we design an on-line control
policy that jointly optimizes the decisions for storage from two
energy sources and supply to the consumer, which has bounded
performance from the optimal scheme. We provide a close-form
solution to our control optimization which renders our policy
implementation with minimum complexity. Simulations show that
introducing renewable energy can effectively reduce the long-term
cost and improve the efficiency of energy storage relative to the
battery operation cost.

Index Terms— Smart Grid, Renewable Energy, Energy Storage,
Lyapunov Optimization, Online Control

1. INTRODUCTION

The incorporation of energy storage in smart grid has the
promising potential to increase the grid reliability by reducing
voltage fluctuation, and at the same time reduce energy bill to
the consumers. The wider adoption of renewable energy into the
grid system as green energy source enables us to harness the
free energy source but also imposes challenge for grid operation
due to its nature of uncertainty. Building effective energy storage
integrating the renewable energy source is particularly important to
realize both benefits. In smart grid, information, communication,
and control technologies are essential to improve the power grid
stability and reliability, and to effectively manage the integrated
renewable energy sources and energy storage devices. The most
challenging problem in energy storage and management is con-
cerning the high cost of storage itself, i.e., the limited battery
life, the number of recharges/discharges, and the cost associated
to them. To manage storage efficiently, an optimized control policy
for energy management at the battery and from both renewable
source and power grid is needed. The design challenges involved
in this problem include stochastic behaviors of renewable energy
and grid power pricing, the double effects of energy cost saving
and operating cost by storing energy or using stored energy, and
the finite storage capacity coupling the control decisions over time.

There has been rising interests on control policy design to
manage power for energy storage recently. Different techniques
are sought to address this problem. With statistical information
of the dynamics available, [1], [2] use dynamic programming
formulation to derive threshold-based control policies. Quadratic
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Fig. 1. An energy storage and management system

control techniques [3] and convex optimization [4] are used to
formulate the storage management problem, where the system is
assumed static or no battery capacity constraints. Some recent
works apply Lyapunov optimization techniques [5] to design online
control policy for energy storage [6]-[8]. However, they either only
consider power grid without renewable energy source [6], or with
renewable energy but without considering the battery recharging
or discharging cost [7], [8]. The latter cost is in fact crucial
in determining the battery actions for storage management, and
making the problem more involved. In addition, these existing
works do not provide explicit control solution.

In this paper, we aim at designing an online control policy for
battery storage management with integrated renewable energy, with
the goal of meeting consumer demand while minimizing the long-
term cost. Both energy purchase cost and battery operating cost are
modeled. Through Lyapunov optimization technique, we develop an
online control scheme which only depends on the current system
dynamics. We provide explicit solution of the control actions as
functions of the current system dynamics, thus the complexity is
minimum for implementation. The explicit control solution also
enables us to see a clear priority among grid, renewable, and battery,
for energy supply to the consumer. The performance bound of the
proposed online control policy to the optimal performance is also
provided.

2. SYSTEM MODEL

We consider an energy storage and management system that
supplies the electricity to a power consuming entity, such as resi-
dential household, through the power sources and energy storage.
We consider two types of power source generators: the traditional
grid and the renewable energy (e.g. solar). In addition, a DC battery
is used for energy storage and supply. Both generators are able
to directly supply electricity to the user, and recharge the storage
battery, as shown in Fig. 1'. We assume a time-slotted system model

IFig. 1 shows a simplified model. In a real system, DC/AC converters
are applied for charging/discharing to/from the battery.
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where the operation is performed per time slot t. We denote the
power demand at the user at time slot ¢ as W (¢).

2.1. Power Source

Traditional Grid: A user is able to purchase power P(t) from
the traditional power grid at a real-time price C'(¢) set by the utility.
The amount P(t) is bounded by

0 < P(t) < Pmax ey

where Ppax is the maximum amount of power a user can purchase
from the grid. The amount P(¢) can be used to supply the user
demand W (t) and/or charge into the battery for storage. The unit
price C(t) is bounded by Cmin < C(t) < Cmax. The value of
C(t) is known to the user and remain unchanged during the same
slot. We assume C(t) is determined by the utility and is not a
function of P(t).

Renewable Energy: We consider solar energy as a typical exam-
ple of our renewable energy source at the user-end. Let S(¢) be
the amount of renewable energy generated at time ¢. It is used for
both direct power supply to meet the demand and energy storage
in the battery. Let S1(¢) and S2(t) be the amount used for direct
power supply and battery recharging, respectively. We assume that
S(t) will have the priority to first supply the demand W (¢), i.e.,

Sy (t) = min{W(t), S(t)}. ®)

A controller will then decide whether the remaining part will be
charged into the battery, as shown in Fig. 1. Thus, the amount
charged into the battery, S2(t), is bounded by

0 < Sa(t) < S(t) — Si(8). 3)

2.2. Battery Storage
We consider a simple model for the battery recharg-
ing/discharding, where no energy loss during recharg-

ing/discharging nor leakage of stored energy over time. Due
to the battery property, the battery cannot be both recharged and
discharged at same time. However, there can be multiple sources
for recharging, e.g., from both the grid and renewable sources. Let
Q(t) be the portion of P(t) from the traditional grid to be stored
into the battery. The total amount of energy can be recharged into
battery per time slot is bounded by Rmax

0 S Q(t) + 52 (t) S Rmax- (4)
Similarly, the discharging amount, denoted by F'(t), is bounded by:
0 < F(t) < Dmax 5)

where Dpax denotes the maximum amount of discharge amount
from battery per time slot. Since there is no simultaneous recharg-
ing or discharging, we have

Q(t) + S2(t) > 0= F(t) =0, F(t)>0= Q(t)+ Sa(t) = 0. (6)

Denote the state of battery (SOB) at time slot ¢ as Y (¢). It is upper
bounded by a finite capacity Y,.q. and lower bounded by Yi,in

Knin S Y(t) S Knax- (7)

The values of Yimax and Yimin depend on the size and type of battery.
The dynamics of SOB due to recharging and discharging activities
are modeled as

Y(t+1) =Y(t) + Q(t) + S2(t) — F(1). (3)

We take into account the costs of battery recharging and dis-
charging, which are denoted by C,. and Cg., respectively.
They are determined by the battery lifetime characteristics and
the price of the battery. Note that since there are two pos-
sible sources Q(t) and S2(t) for recharging, the cost of Ch.
will be paid if either of them is positive. Finally, we de-
fine two indicator functions for recharging and discharging
activities: 1r(t) = {1 :if Q(¢) + S2(t) > 0; 0 : otherwise} and
1p(t) = {1:if F(t) > 0; 0 : otherwise}.

2.3. Power Demand Balancing

At each time slot ¢, required energy from different sources that
need to be determined are P(t), Q(t), F(t), and S2(t). From the
supply-demand relationship shown in Fig. 1, these quantities must
meet the user’s demand as

W(t) = P(t) — Q(t) + Si(t) + F (D). ©)

The cost incurred to the system at each time slot ¢ includes
the power purchase cost from the grid and the cost of battery
recharging/discharging for energy storage or consumption, defined
as J(t), given by

J(t) = P(t)C(t) + 1r(t)Cre + 1p(t)Cuc. (10)
3. ENERGY MANAGEMENT CONTROL ALGORITHM

At each time slot, we assume C(t), W (t) and S(¢) are
known. Our objective is to design a control policy =w(t) =
{P(t),Q(t), F(t), S2(t)} to minimize the long-term time-averaged
cost, provided that all the constraints given in Section 2 are
satisfied. The optimization problem can be described as follow

T-1
. .1
P1: 21(13)1 Tlgl;o T ;E{J(t)} (11)

s.t. (1), (6), (9), and
0 < So(t) < min{S(t) — S1(t), Rmax, Ymax — Y (1)} (12)
0 < Q(t) + S2(t) < min{ Rmax, Yimax — Y ()} (13)
0 < F(t) < min{Dmax, Y (t) = Yiin} (14)

where E{-} is taken with respect to S(¢) and W (t). Note that
constraints (12)-(14) are the results of combining (3)-(5) with (7).

Note that if the distributions of W (t), C(t) and S(t) are
known, it is possible to solve the optimization problem P1 through
Dynamic Programming, of which we have to face the curse of
dimensionality in terms of complexity. Instead, we are interested
in designing an online control policy that does not rely on the
statistics of W (t), C(t) and S(t). To do this, we adopt Lyapunov
optimization technique [5] to obtains a sub-optimal solution while
satisfying all constraints in P1. The Lyapunov approach provides
an on-line algorithm for control decision 7(¢) with given system
input W (t),C(t), and S(¢) at time slot ¢. Furthermore, we can
bound its performance gap to the optimal solution by a system
design parameter.

3.1. Online Control Policy via Lyapunov Optimization

Due to the dependency of {Q(t), S2(t), F'(t)} on the SOB Y (t)
in constraints (12)-(14), P1 is difficult to solve. We first relax these
constraints to a long-term time-averaged relation between Q(t),
S2(t) and F'(t). It can be shown that the following condition holds

1=
Jim > E{Q(1) + Sa(t) — F(t)} = 0. (15)

t=0
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We modify P1 to the following problem with relaxed constraints.

Pl,: min

st (1), 4, (5)7 (6), (9), (15) and
0 < Sa(t) < min{S(t) — S1(¢), Rumax}. (16)

Note that, constraints (12)-(14) in P1 are replaced by (4), (5),
(15), and (16) in P1,, which remove the dependence on Y ().
Note that since the constraints are relaxed, solving P1, will not
give a feasible solution to P1.

Define X (t) as a virtual queue

X(t)2Y(t) — VCimaz — Dmaz — Yomin a7

where V' > 0 is a constant to be explained later. Note that X (¢) is
a shifted version of Y'(¢) which can be negative. Due to (8), the
dynamic of X (¢) is given by

X(t) 4+ Q(t) + Sa(t) — F(t). (18)

Define the Lyapunov function for X (¢) as L(X(t)) £ X>(t)/2,
and the conditional Lyapunov drift [5] for X (¢) at time ¢ as
AX(t) = BE{L(X(t + 1)) — L(X(¢))| X (¢)}. With (9), we can
show that AX (t) is bounded by

X(t+1) =

AX(t) < B—X@OE{W(t)— P(t) — S1(t) — S2(t)| X (¢)}

where B HlaX{Dm(“” R?na;c}/z'

The Lyapunov approach intends to minimize a drift-plus-penalty
metric. The drift-plus-penalty is expressed as a weighted sum of the
Lyapunov drift and the expected cost, defined as U(t) 2AX (t)+
VE{J(t)}, where V serves as a weighting factor providing the
relative weight between the cost and the drift in the metric. Using
the bound above for AX (t), we have the bound on the drift-plus-
penalty as

U(t) < B = X(OE{W (1) — P(t) — S1(t) — S2(1)| X ()}
+VE{J(0)}. (19)

We design our online control algorithm to minimize the upper
bound of the drift-plus-penalty U(¢) in (19), with given system
states {W(t),C(¢),S(¢),X (¢t)} at time ¢. The resulting minimiza-
tion problem can be shown to have the following expression

P2: I“ﬂ(ltr)l X@®)[P(t) + S2(t)] + VJ(t) (20)

st (1), (4), (5), (6), (9), and (16).

We will show later that the solution to P2 will meet the constraints
(12)-(14) of P1.

As shown in (6), the battery is either in a recharging/discharging
state, i.e., 1r(t) + 1p(t) = 1, or in an idle state, i.e., 1r(t) =
1p(t) = 0. Let £(¢) denote the value of the objective in P2 when
battery is in the idle state, then we have

(1) = [Wi(t) -

By analyzing the objective and constraints
lem P2, we arrive at the following

{P(t),92(1), Q7 (1), F™ (1)}
1) When X(t) < X(t) +VC(t) <0: Let

S1(0)][X(t) + V().

in the prob-
optimal  solution

F'(t) =
Sa(t) = n{S( ) = S1(t), Rumax} on
Q'(t) = min{ Rmax — S5(t), Pmax — W (t) + S1(t)}
P'(t) = min{W (t) + Rmax — S1(t) — S5(t), Pmax}
It P'(t )[

(t) +VC( )+ S5(t) X (t) + VCre < (1), then
{F7(1),55 (1), Q" (1), P* (1)} =

Otherwise, F'*(t) = S5(t) =
2) When X(t) <0< X(t)+VC(t): Let

F'(t) = min{W () — S1(t), Dmax}
S3(t) = min{S(t) — S1(t), Rmax} 22)
Q(t)=0
P'(t) = [W(t) — S1(t) — Duax) "
If PO)[X() + VO@®)] + S2()X(t) + V(Ar(t)Cre +
p()Cac) < &(t), then {F7(t), S5(1), Q" (1), (1)} =
{F'(t),S5(t),Q'(t), P'(t)}; Otherwise, F*(t) = S5(t) =
Q7 (t) =0, P*(t) = W(t) — Si(t).
3) When 0 < X(t) < X(t) + VC(¢): Let
F'(t) = min{W () — S1(t), Dmax}
SL(t) = Q'(t) = 0 23)
P'(t) = [W(t) — S1(t) — Dumax]™
If P@O[X(t) + VC(t))

+ Ve < &(t), then
(0,550, Q") P = {P/(0), 500,00 P'(0);

Otherwise, F*(t) = S5(t) = Q™ (¢t) = 0, P*(t) = W(t) — S1(t).
Note that due to Si(t) in (2), the expressions in (22) for F’(t)
and S5(t) imply that F'(¢)- S5(t) = 0, i.e., the battery is either in
recharging or discharging state, but not both.

The above solution can be intuitively explained as follows: case
1) corresponds to the state when energy stored in the battery is
relatively low, and (21) reflects the incentive to recharge the battery,
provided that the recharging cost C... is not high. To the opposite,
case 3) indicates the scenario when the energy stored in the battery
is high, and there is an incentive to discharge the battery to supply
energy if Cg. is not high. Case 2) corresponds to the case when
the battery is moderately charged, and recharging or discharging is
only based on the balance between supply S(¢) and demand W (¢).

3.2. Performance of the Online Control Policy

We first show that the online control policy developed in Sec-
tion 3.1 meets the constraints of the original problem.

Proposition 1. The optimal control policy 7*(t) for the problem
P2 is a feasible policy for the problem P1.

Proof: 1t is easy to verify that Q™ (t), S5 (t), and F'* (t) satisfy
constraints (4) and (5), respectively. Moreover, if we can prove (7)
holds, then as a direct result, Q*(¢), S*(t), and F*(t) will meet
constraints (12)) and (14), respectively. Let V in (17) be upper
bounded by Vimax, Where Vinax = Yinax — Ym"‘c Rmax—Dmax . Then,
for any fixed V' € (0, Vinax| at time slot ¢, we have the following
bounds for X( ) —VCiax — Dmax < X( ) < Ymax — Ymin —
Dmax — VCmax. Combining the above and (17), we have Y'(t)
satisfies (7) at each time ¢. Therefore, control decisions P*(t),
Q*(t), S5(t), and F'*(t) are feasible for the original problem P1.

]
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Next, we show that under the i.i.d. assumption of system inputs,
the performance of the online control policy is bounded from that
of the optimal policy as follow.

Proposition 2. Assume W (t), C(t), and S(t) i.i.d. over time slot
t. Under the online control policy w*(t) given in Section 3.1, the
resulting long-term time averaged cost is bounded from the optimal
objective value £° in the problem P1 by

T-1
1
im — <¢° !
Jim ; E{J(t)} <&+ B/V. (24)
Proof: We adopt the Lyapunov optimization technique in [5]
to derive the above bound. Details omitted. |

4. SIMULATION RESULTS

To realistically set the price C(¢), we use the data collected
from Ontario Energy Board [9], where C'(¢) consists of three-stage
prices and is periodic every 24 hours. Fig. 2 shows the value of C'(t)
within the period of 24 hours, where the three-stage prices are given
as C, = $0.118, C,,, = $0.099, and C; = $0.063. We set the time
slot duration to be 10 mins, and approximate the renewable energy
S(t) and user demand W (¢) within each slot to be constant. We
generate S(t) and W (t) per slot using uniform distribution within
interval [0.1/6 kWh, 1.5/6 kWh] and [0.5/6 kWh, 2/6 kWh],
respectively. Other parameters are chosen as follows: Rmax = 1 / 3

kWh, Dmax = 1/3 kWh, Pmax = 1/3 kWh, Crc = Cy., and
— — ymax*ymin*Rmax*Dmax
V - ‘/max - .

First, we look at the Cg%fect of renewable energy on the cost
saving. We assume Ymax = 3 kWh, and Ymin = 0.2Ymax. As
shown in Fig. 3, the integration of renewable energy offers about
70% off in the total cost that a user needs to pay in a grid-only
system (i.e., the traditional grid is the only energy source). The
benefit is mainly contributed by a deduction from grid cost.

For the same battery capacity, in Fig. 4, we study the bat-
tery recharging/discharging activities by plotting the number of
recharges (and/or discharges) vs. Cy. (or Cy4.). We compare the
performance of the system with or without renewable energy. As
shown, with the renewable energy, higher cost associated with
recharging/discharging becomes more tolerable for long-term cost
minimization. For example, in a grid-only system, the control
decision suggests no recharging (discharging) actions at a cost of
Chre (or Cqc) > $0.008, while this cost becomes “affordable” when
the renewable energy is added, reflected by the positive number of
recharges/discharges. In general, the total number of recharges and
discharges decreases when the cost Cy. (or Cy.) increases. Thus,
the battery recharging/discharging cost directly affect the battery
participation, and thus the effectiveness of the energy management
system.

Finally, in Fig. 5, we show how the battery capacity affects the
relative proportions of purchased power from grid into the battery
at different prices. We plot the total amount of purchased energy
at a specific price that is charged into the battery, Eq(C;) 2
Yteincy—c;y @ (1), for Ci € {C1, O, Ch}. Intuitively, as
the capacity increases, the optimal decision will let the battery
buy energy from the gird only if C(¢) is the cheapest. For our
control policy, as Yimax increases, V' increases, and the performance
approaches to the optimal one as indicated in Proposition 2. This
result is verified on Fig. 5, where we see when Yiax is large, most
energy purchased from the grid is when C'(¢) = C;.
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5. CONCLUSION

In this work, we proposed an online control policy to minimize
the long-term time-averaged cost for energy storage management
with renewable energy integration. We incorporated the system
dynamics and the batter operation cost in the problem formulation,
and applied Lyapunov optimization technique to design an on-
line control policy with a bounded performance from the optimal
scheme. Our control decision was derived in closed-form resulting
in minimum implementation complexity. Simulations showed the
effectiveness of integrating renewable energy for energy storage in
reducing the long-term cost as well as improving the efficiency of
energy storage relative to the battery operation cost.
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