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ABSTRACT
This paper proposes a decentralized state estimation scheme via net-
work gossiping with applications in smart grid wide-area monitor-
ing. The proposed scheme allows distributed control areas to solve
for an accurate global state estimate collaboratively using the pro-
posed Gossip-based Gauss-Newton (GGN) algorithm. Furthermore,
the proposed scheme mitigates the influence of bad data by adap-
tively updating the noise variances and re-weighting the contribu-
tions of the most recent measurements for state estimation. Com-
pared with other distributed techniques, our scheme via gossiping is
more flexible and resilient in case of network reconfigurations and
failures. We further prove that the power flow equations satisfy the
sufficient condition for the GGN algorithm to converge to the de-
sired solution. Simulations of the IEEE-118 system show that the
proposed scheme estimates and tracks the global state robustly, and
degrades gracefully when there are random failures and bad data.

Index Terms— hybrid state estimation, convergence, gossiping

1. INTRODUCTION
Traditionally, power system state estimation (PSSE) has been solved
via the Gauss-Newton (GN) procedure (or its variants) by fitting
the measurements from Supervisory Control and Data Acquisition
(SCADA) systems [1] to the power flow equations. Recently, mea-
surements from Phasor Measurement Units (PMU), deployed in the
Wide-Area Measurement Systems (WAMS), are gaining increasing
attention since the state estimator becomes linear [2]. Due to the
limited deployment of PMUs, researchers have proposed hybrid es-
timation schemes [3, 4] by integrating WAMS and SCADA data.

Many works in literature [2, 5–11] have further considered dis-
tributing the state estimation proccedures across distributed areas.
Each area obtains estimates of the local state relying on redundant
measurements that guarantee local observability, and then refines
them hierarchically by tuning the estimates on buses shared with
neighboring areas. Although these methods alleviate the burdens
at control centers, they depend on aggregation trees that limit their
flexibility in network reconfiguration during failures or attacks.

Recently, [12, 13] proposed distributed schemes that do not re-
quire local observability. Specifically, [12] follows a similar formu-
lation in [7–9] and uses the alternating direction method of multipli-
ers (AD-MoM) to distribute the algorithm. However, its information
exchange model is constrained by the grid topology, which is also
inflexible for network reconfiguration. Furthermore, the simulations
in [12] are based on PMU data and the algorithm convergence in
the presence of SCADA measurements is not discussed. While the
merits of hybrid decentralized schemes are evident from [3,4], these
papers do not provide an analytical proof of convergence. Inspired
by network diffusion algorithms, the approach in [13] solves for the
global state in a fully distributed manner without relying on hierar-
chical aggregation. These algorithms have been developed for linear
filtering problems [14], convex optimizations [15] and adaptive es-
timation [16], which combine a local descent step with a diffusion

step via gossiping. The convergence of these algorithms depends
on the convexity of the cost function, and more importantly a small
(or diminishing) step-size which considerably slows down the algo-
rithm. Moreover, it is not clear how they perform in practice because
PSSE using hybrid measurements is non-convex.

Compared to [13,17], another major issue addressed in this paper
is bad data processing. There has been extensive work on χ2-test
or largest normalized residual (LNR) test [1,18–21] for bad data de-
tection. These methods repeatedly remove or compensate the identi-
fied bad data after iterative re-estimation [9, 22], where a distributed
scheme is later developed in [23]. A more comprehensive review on
bad data processing techniques can be found in [24, 25].

In this paper, we develop a Decentralized Adaptive Re-weighted
State Estimation (DARSE) scheme using the Gossip-based Gauss-
Newton (GGN) algorithm we proposed in [26], and prove that the
power flow equations satisfy the sufficient convergence condition for
the GGN algorithm. For bad data processing, the DARSE scheme
follows a similar approach in [27, 28] by adjusting the weights for
measurements based on its quality to reduce their impacts on the
state estimates. We show that the DARSE scheme is consistent with
the maximum likelihood (ML) framework, where the noise variances
are unknown and adaptively updated. Finally, simulations of the
IEEE-118 bus system corroborate our claims on the estimation and
tracking performance of the DARSE scheme, as well as its robust-
ness to bad data injection.

2. SYSTEM MODEL
We consider a power grid with N buses (i.e., substations) that rep-
resent interconnections, generators or loads. Denote the bus set
N , {1, · · · , N} and the edge set E , {(n,m)}, where {(n,m)}
indicates the transmission line between n and m. Let the cardinality
of the edge set be |E| = L. We define N (n) , {m : (n,m) ∈ E}
as the neighbor of bus n and let Ln = |N (n)|. The Energy Man-
agement Systems (EMS) at control centers collect measurements on
certain buses and transmission lines to estimate the state of the power
system, i.e., the voltage phasor Vn = |Vn|eiθn ∈ C at each bus n ∈
I with θn = ∠Vn. Instead of (Vn, θn), we consider the Cartesian
coordinates v = [<{V1}, · · · ,<{VN},={V1}, · · · ,={VN}]T .

2.1. Measurement Model
Since there are 2 complex injection measurements at each bus and
4 complex flow measurements on each line, this amounts to twice
as many real variables. Thus the measurement ensemble has M =
4N+8L entries in an aggregate vector partitioned into four sections1

z[t] = [zTV [t], zTC [t], zTI [t], zTF [t]]T , containing the length-2N volt-
age phasor zV [t] and power injection vector zI [t] at bus n ∈ N , the
length-4L current phasor zC[t] and power flow vector zF [t] on line
(n,m) ∈ E at bus n. Defining the power flow equations f(·)(v) in
Appendix A and letting v̄[t] be the true state at time t, the individual
vector z(·)[t] = f(·)(v̄[t]) + r(·)[t] contains observations corrupted

1Subscripts {V, C, I,F} mean voltage, current, injection and flow.
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by measurement noise r(·)[t] that arises from instrumentation im-
precision and random outliers whose variances are potentially much
larger due to attacks or equipment malfunction. The entries that have
large variances are what we call bad data. Then we have

z[t] = f(v̄[t]) + r[t], (1)

where r[t] = [rTV [t], rTC [t], rTI [t], rTF [t]]T is the aggregate noise vec-
tor and f(v) = [fTV (v), fTC (v), fTI (v), fTF (v)]T .

A practical data collection architecture in power systems (com-
patible with WAMS and SCADA) consists of I interconnected ar-
eas, where each area records a subset of z in (1). We apply a
binary matrix Ti,(·) ∈ {0, 1}Mi,(·)×M on z to obtain a length-
Mi,(·) vector to pick the corresponding element in each category
from {V, C, I,F}. Letting Ti , [TT

i,V ,T
T
i,C ,T

T
i,I ,T

T
i,F ]T be the

selection matrix in the i-th area, then there are a total of Mi =
Mi,V +Mi,C +Mi,I +Mi,F measurements selected as

ci[t] = fi(v̄[t]) + ri[t], (2)

where ci[t] , Tiz[t] = [cTi,V [t], cTi,C [t], c
T
i,I [t], cTi,F [t]]T and sim-

ilarly fi(·) = Tif(·), ri[t] = Tir[t]. We assume that ri[t]’s are
Gaussian and uncorrelated between different areas, which has an un-
known covariance denoted by Ri[t] , diag[εi,1[t], · · · , εi,Mi [t]].

2.2. Maximum Likelihood (ML) Estimation Framework

The ML estimate is obtained by maximizing the likelihood function
with unknown noise covariances {Ri[t]}Ii=1. Using (2), it is equiv-
alent to minimizing the following objective over the state space V

nbv[t], bRi[t]
o

= arg min
v∈V,Ri

IX
i=1

‖ci[t]− fi(v)‖2
R−1

i
+

IX
i=1

log |Ri|.

Setting its derivatives with respect to v and {εi,m}Mi
m=1 for i =

1, · · · , I to zero, we have the estimates bv[t] and bεi,m[t] as follows

bv[t] = arg min
v∈V

IX
i=1

[ci[t]− fi(v)]T bR−1
i [t] [ci[t]− fi(v)] (3)

bRi[t] = diag[· · · ,bεi,m[t], · · · ], bεi,m[t] = |ci,m[t]− fi,m(bv[t])|2,

which would require substituting bRi[t] (with the unknown v) back to
(3) to jointly solve for the variances bεi,m[t] and the state bv[t]. How-
ever, this approach is highly non-linear and requires a considerable
amount of computations. Thus, in the following, we take advantage
of the fact that measurements are streaming, to switch adaptively
between the estimate of the state and the estimate of the variances.

3. DECENTRALIZED STATE ESTIMATION
Our objective is to harness the computation capabilities in each area
to perform state estimation in Section 2.2 online in a decentralized
fashion. Note that each area estimates the global state, rather than
the portion that pertains to its local facilities. If the noise covariance
is known, the state (3) can be obtained directly from conventional
PSSE [1]. Therefore, we propose to use the previous covariance
estimate as a substitute2 of bRi[t] to re-weight the measurements in
the current snapshot, and propose the Decentralized Adaptive Re-
weighted State Estimation (DARSE) scheme in Algorithm3 1.

2In general, a better substitute can be predicted using the temporal statis-
tics of the random process r[t], but here we simply use the previous estimate.

3If desired, one can iterate once again the state estimation after the outlier
covariance has been updated to give a better state.

Algorithm 1 DARSE Scheme

1: Predict outlier covariance Γi = bRi[t− 1], i = 1, · · · , I
2: Update state estimates collaboratively

bv[t] = arg min
v∈V

IX
i=1

[ci[t]− fi(v)]T Γ−1
i [ci[t]− fi(v)]

3: Adjust outlier covariance bRi[t] = diag[bεi,1[t], · · · ,bεi,Mi [t]]

bεi,m[t] = |ci,m[t]− fi,m(bv[t])|2. (9)

Since step (1) and step (3) in Algorithm 1 are decoupled between
different areas, their decentralized implementations are straightfor-
ward. Now we omit the time index t and focus on solving step (2)

bv = arg min
v∈V

IX
i=1

‖c̃i − f̃i(v)‖2, (4)

where f̃i(v) = Γ
− 1

2
i fi(v) and c̃i = Γ

− 1
2

i ci. Note that we propose
to solve (4) in a decentralized setting, where each area has a local
estimate vki that is in consensus with other agents i′ 6= i and asymp-
totically converges to the global estimate bv. The global estimate bv
is traditionally obtained by the Gauss-Newton (GN) algorithm

vk+1
i = PV

h
vki + dki

i
, dki = Q−1(vki )q(vki ), (5)

where PV(·) is a projection on the space V, q(vki ) and Q(vki ) are
scaled gradients and GN Hessian of the cost function

q(vki ) =
1

I

IX
p=1

F̃Tp (vki )(c̃p − f̃p(v
k
i )) (6)

Q(vki ) =
1

I

IX
p=1

F̃Tp (vki )F̃p(v
k
i ),

with F̃i(v) = Γ
− 1

2
i Tidf(v)/dvT = Γ

− 1
2

i TiF(v) computed from
F(v) in Appendix A. However, each area knows only its own esti-
mate vki and part of the measurements/functions in (6), which makes
it impossible to implement step (2) in a decentralized setting. There-
fore, we use the “network average” of different areas as surrogates
of q(vki ) and Q(vki ), which can be obtained via gossiping

h̄k =
1

I

IX
i=1

F̃Ti (vki )
“
c̃i − f̃i(v

k
i )
”

(7)

H̄k =
1

I

IX
i=1

F̃Ti (vki )F̃i(v
k
i ). (8)

The enabling technique we propose here for solving step (2) is
the Gossip-based Gauss-Newton (GGN) algorithm we developed
in [26], which emulates the exact GN update in (5) by averaging
via near-neighbor communications. Next we describe the GGN al-
gorithm to make the paper self-contained.

3.1. Gossip-based Gauss-Newton (GGN) Algorithm

We interchangeably use area and agent as the entity for communi-
cations and computations. The GGN algorithm runs on two time
scales. One is the GN update denoted by “k”, and the other is the
gossip exchange denoted by “`” between every two GN updates. All
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agents have a common clock that determines the time t = τk for the
k-th update across the network. Then the agents exchange informa-
tion via gossiping at τk,` ∈ [τk, τk+1) for ` = 1, · · · , `k.

After the k-th update by each agent at time τk, the network enters
gossip exchange stage [τk, τk+1) to compute the surrogates h̄k and
H̄k in (7). Each agent combines the information from its neighbors
with a weight matrix Wk(`) , [W k

ij(`)]I×I during [τk,`, τk,`+1),
where W k

ij(`) is the weight associated to the edge {i, j}, which is
non-zero if and only if {i, j} ∈ Mk,`. As an example, we exploit the
Uncoordinated Random Exchange (URE) protocol often discussed
in literature [29–32], where an agent i chooses a neighbor agent j
to communicate during [τk, τk+1). The exchanges are pairwise and
local [29]. Suppose agent Ik,` wakes up at τk,` ∈ [τk, τk+1) and
picks Jk,` to communicate. Given 0 < β < 1, the weight matrix is
Wk(`) = I − β(eIk,` + eJk,`)(eIk,` + eJk,`)T , where en is the
canonical basis with 1 on the n-th entry and 0 otherwise.

Define local information vector at the i-th agent for the `-th gossip

Hk,i(`) =

»
hk,i(`)

vec [Hk,i(`)]

–
, (10)

evolving from initial conditions hk,i(0) , F̃Ti (vki )(c̃i − f̃i(v
k
i ))

and Hk,i(0) , F̃Ti (vki )F̃i(v
k
i ). The i-th agent mixes the local

information with its neighbors as

Hk,i(`+ 1) = W k
ii(`)Hk,i(`) +

X
j 6=i

W k
ij(`)Hk,j(`) (11)

for all i = 1, · · · , I . After `k exchanges, the local GGN descent for
the (k + 1)-th update at the i-th agent is performed as

vk+1
i = PV

h
vki + dki (`k)

i
, dki (`k) = H−1

k,i(`k)hk,i(`k). (12)

Remark: It is simulated in [2] that the overall delay from substa-
tions in a IEEE-14 bus system to the control center is around 2ms
with bandwidth 100-1000 Mbits/s. Thus we bound the worst case
hop delay by discounting it with the network diameter 2/7 ≈ 0.6ms.
We assume that the state estimation here is performed every 10 sec-
onds rather than today’s periodicity (minutes) [2]. If information is
stored with 64-bits per entry, the data packets sent by each agent
per exchange has 64(2N + 4N2)-bits. For a power system with
N = 118 buses with a communication bandwidth 100 Mbits/s, the
maximum number of exchange that can be accomodated in 10 sec-
onds is 10×108/(0.6×10−3×108+64(2×118+4×1182)) ≈ 300,
which is far more than 10 exchanges as examined in simulations.
3.2. Convergence Analysis

Condition 1. First, we assume the following conditions:

(1) The state space V is closed and convex.

(2) The cost
PI
i=1 ‖c̃i − f̃i(v)‖ is bounded for all v ∈ V.

(3) Denote by λmin(·) the minimum eigenvalues and let

σF = min
v∈V

vuutλmin

 
IX
i=1

F̃Ti (v)F̃i(v)

!
> 0.

(4) There exist finite `k’s such that ‖dki (`k)− dki ‖ ≤ κ for ∀i, k.

Conditions 1-(2) and (3) are satisfied if the system is observ-
able [33] and the noise is finite. As shown in [26, Prop. 1], condition
2-(4) holds as long as `k’s are chosen properly, and all agents are
initialized with consensus estimates v0

1 = · · · = v0
I . Furthermore,

we prove that the Jacobians {F̃i(v)}Ii=1 to satisfy the Lipschitz con-
dition, which is important for the convergence analysis.

Lemma 1. The Jacobian matrix F̃i(v) satisfies the Lipschitz condi-
tion for all i and arbitrary v,v′ ∈ V‚‚‚F̃i(v)− F̃i(v

′)
‚‚‚ ≤ ω ‚‚v − v′

‚‚ , ∀i = 1, · · · , I (13)

where ω is the Lipschitz constant given in (27).

Proof. See Appendix B.

The GGN algorithm is initialized with v0
i at each agent and con-

tinues until a stopping criterion is met. Since (4) is a non-linear least
squares (NLLS) problem that is non-convex, the iterate vki may stop
at any fixed point v? of (5) satisfying the first order condition

IX
i=1

F̃Ti (v?)
“
c̃i − f̃i(v

?)
”

= 0. (14)

Clearly, the ML estimate bv in (4) is one of the fixed points and it
is desirable to have the algorithm converge to this point. The anal-
ysis presented in our previous paper [26] is particularly useful here
after we have proven Lemma 1 specifically for power systems. The
resultant theorem from [26] can be re-stated as follows.

Theorem 1. [26, Lemma 1, 2, 3 & Theorem 1] Given Lemma 1
under Condition 1, the error between vki in (12) and bv in (4) satisfies‚‚‚vk+1

i − bv‚‚‚ ≤ T1

‚‚‚vki − bv‚‚‚2

+ T2

‚‚‚vki − bv‚‚‚+ κ, (15)

where T1 , ω/2σF , T2 ,
√

2ωε̃/σ2
F , ε̃ =

PI
i=1 ‖c̃i − f̃i(bv)‖. If

T2 � 1 and κ ≤ (1− T2)2/4T1 with v0
1 = · · · = v0

I , then for
any v0

i satisfying ‖v0
i − bv‖ < 2σF /ω − κ, the iterative error is

asymptotically bounded by lim sup
k→∞

‚‚vk+1
i − bv‚‚ ≤ κ.

Theorem 1 implies that all the agents will converge to an arbitrar-
ily small neighborhood of the ML estimate bv if each area is initial-
ized sufficiently close. In fact, an effective initializer is the re-scaled
average of the voltage phasor measurements ci,V of all areas because
it povides direct state measurements accurately. We do not elaborate
on the details here because it is straightforward.

4. NUMERICAL RESULTS
We illustrate the Mean Square Error (MSE) performance of the
DARSE scheme, where the MSE is the averaged over all agents
MSEV =

PI
i=1 E

‚‚vki − v̄
‚‚2
/I for each iteration k. We used

MATPOWER 4.0 to simulate the IEEE-118 system with 3 snap-
shots and perform DARSE over 100 runs. We divide the system into
I = 10 areas where 9 areas have 12 buses in each and 1 area has
the remaining 10 buses, all randomly drawn from 1 to 118 without
repetition. For each area, we randomly choose 50% of the SCADA
measurements and exploit the 36 PMU data in Area 1, 2 and 3. In
the 3 snapshots, the measurements are corrupted by Gaussian errors
ri,m[t] ∼ N (0, σ2) with σ = 10−2, among which 10 data entries
are chosen at random to inject outliers with variances 30σ2.

We compare the DARSE scheme with the centralized GN proce-
dure with and without bad data in Fig.1 in terms of MSE against
the iteration k = 1, · · · , 20 for each snapshot (i.e., 60 updates for 3
snapshots). Between every two updates, each agent proceeds under
the URE protocol and talks to each agent 10 times on average such
that the network traffic is comparable to the centralized scheme as if
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Fig. 1. Performance of the DARSE scheme (blue) against the cen-
tralized GN approach with (red) and without (black) bad data

the local measurements were routed through the network. We also
impose link failures between agents in the DARSE scheme, where
any established link {i, j} fails with probability 0.1 independently.

The centralized GN algorithm which processes perfect data (black
dotted line) serves as the ultimate performance benchmark. It is seen
that DARSE scheme only has a small performance loss compared
with the centralized GN with perfect data. When there is no link
failures, the DARSE scheme approximately touches the benchmark,
but we did not present it due to lack of space. When bad data are
present, thanks to the re-weighted bad data suppression, the DARSE
scheme (blue dotted line) outperforms significantly the centralized
GN approach without re-weighting procedure (red dotted line).

5. CONCLUSIONS
We proposed a DARSE scheme for hybrid power system state es-
timation integrating WAMS and SCADA system, which adaptively
estimates the global state vector along with an updated noise co-
variance. The simulation shows that the DARSE scheme is able to
deliver accurate estimates of the global state at each distributed area,
even in the presence of bad data and random link failures.

A. POWER FLOW EQUATIONS AND JACOBIAN MATRIX
The matrix Y = [−Ynm] includes line admittances Ynm = Gnm +
iBnm, (n,m) ∈ E , shunt admittances Ȳnm = Ḡnm + iB̄nm of
the line (n,m) ∈ E , and self-admittance Ynn = −

P
m 6=n(Ȳnm +

Ynm). Using en = [0, · · · , 1, · · · , 0]T , we define the following

Yn , eneTnY, Ynm , (Ynm + Ȳnm)eneTn − YnmeneTl . (16)

Letting Gn = <{Yn}, Bn = ={Yn}, Gnm = <{Ynm} and
Bnm = ={Ynm}, we further define the following matrices

NP,n ,

»
Gn −Bn

Bn Gn

–
NQ,n , −

»
Bn Gn

−Gn Bn

–
EP,nm ,

»
Gnm −Bnm

Bnm Gnm

–
EQ,nm , −

»
Bnm Gnm

−Gnm Bnm

–
CI,nm ,

»
Gnm 0

0 −Bnm

–
CJ,nm ,

»
Bnm 0

0 Gnm

–
.

The SCADA systems collect the active/reactive power injection
(Pn, Qn) at bus n and flow (Pnm, Qnm) at bus n from line (n,m)

Pn = vTNP,nv, Qn = vTNQ,nv, (17)

Pnm = vTEP,nmv, Qnm = vTEQ,nmv. (18)

We stack these functions in the power flow equation vectors

fI(v) = [· · · , Pn, · · · , · · · , Qn, · · · ]T (19)

fF (v) = [· · · , Pnm, · · · , · · · , Qnm, · · · ]T . (20)

The WAMS collects the voltage phasor (<{Vn},={Vn}) at bus n
and the current phasor (Inm, Jnm) at bus n on line (n,m)

Inm = (12 ⊗ en)T CI,nmv, Jnm = (12 ⊗ en)T CJ,nmv, (21)

where ⊗ is the Kronecker product, and stacks them as

fV(v) = v, fC(v) = [· · · , Inm, · · · , · · · , Jnm, · · · ]T . (22)

The Jacobian F(v) can then be derived from (21), (17) and (18) as

F(v) =
ˆ
I2N HT

C HT
I
`
I2N ⊗ v

´
HT
F
`
I4L ⊗ v

´˜T
, (23)

where HI ,
ˆ
· · · ,NP,n + NT

P,n, · · · ,NQ,n + NT
Q,n, · · ·

˜T
, and

HF ,
ˆ
· · · ,EP,nm + ET

P,nm, · · · ,EQ,nm + ET
Q,nm, · · ·

˜T
and

HC ,
ˆ
· · · ,HT

I,n, · · · , · · · ,HT
J,n, · · ·

˜T
, HI,n , SnCI,n with

CI,n ,
ˆ
· · · ,CT

I,nm, · · ·
˜T

and HJ,n , SnCJ,n with CJ,n ,ˆ
· · · ,CT

J,nm, · · ·
˜T

using Sn , ILn ⊗ (12 ⊗ en)T .

B. PROOF OF LEMMA 1

The F -norm inequality ‖·‖ ≤ ‖·‖F gives us ‖F̃i(v)− F̃i(v
′)‖2 ≤

‖F̃i(v)−F̃i(v
′)‖2F for all i. Since F̃i(v) = Γ

−1/2
i TiF(v), we fur-

ther use the multiplicative norm inequality ‖AB‖F ≤ ‖A‖F ‖B‖F‚‚‚F̃i(v)− F̃i(v
′)
‚‚‚2

F
=
‚‚‚Γ−1/2

i Ti

ˆ
F(v)− F(v′)

˜‚‚‚2

F
(24)

≤ λ−1
min(Γi)

‚‚F(v)− F(v′)
‚‚2

F
. (25)

From (23), we have

F(v)− F(v′) =

2664
02N×2N

04L×2Nˆ
I2N ⊗ (v − v′)T

˜
HIˆ

I4L ⊗ (v − v′)T
˜
HF

3775 . (26)

According to the F -norm definition ‖A‖2F = Tr
`
ATA

´
and the

properties of the trace operator, we have for any v,v′‚‚F(v)− F(v′)
‚‚2

F
= Tr

h“
I2N ⊗ (v − v′)(v − v′)T

”
HIH

T
I

i
+ Tr

h“
I4L ⊗ (v − v′)(v − v′)T

”
HFHT

F

i
.

Expanding HI and HF in (23) and using their symmetric properties,
we have ‖F(v)− F(v′)‖2F = (v − v′)TM(v − v′), where M =

HT
IHI + HT

FHF . It is well-known that any quadratic form of a
symmetric matrix is determined by its 2-norm

(v − v′)TM(v − v′) ≤ ‖M‖
‚‚v − v′

‚‚2
. (27)

The result follows by setting ω = maxi

q
‖M‖λ−1

min(Γi).
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[6] A. Gómez-Expósito, A. Abur, A. de la Villa Jaén, and
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