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ABSTRACT

Sensor deployments in large buildings allow the administrators to su-
pervise the building infrastructure and identify abnormalities. Nev-
ertheless, the numerous data streams reported by the increasing num-
ber of sensors overwhelm the building administrators. We propose a
methodology that assists them to identify abnormal devices usages.
The proposed method takes advantage of Ensemble Empirical Mode
Decomposition (E-EMD) to uncover the patterns of power-draw sig-
nals, thereby enabling us to estimate the intrinsic inter-device corre-
lations. By monitoring the devices correlations over time we com-
pute the usual usage of the devices and report the devices that deviate
from their normal usage. Our evaluation with 10 weeks of real data
shows the efficiency of the proposed method to uncover the devices
intrinsic relationships and detect peculiar events that require the ad-
ministrators attention.

Index Terms— Empirical Mode Decomposition, Energy Con-
sumption, Anomaly Detection

1. INTRODUCTION

Thanks to the mass production of the sensors, modern buildings
contain an increasing number of monitoring tools on which admin-
istrators rely to remotely identify devices failures or misuses that
compromise the buildings operations and are potential energy waste.
However, in large buildings, these sensors provide an excessive num-
ber of data streams; moreover, accounting for the daily and weekly
patterns of human activity, the corresponding signals are usually
non-stationary; finally, due to the variety of monitored devices (light,
heating, ventilation, elevators,...) and the complexity of human ac-
tivity, modeling them is hardly possible.

The aim of this work is to propose a method to monitor energy
consumption in a building and pinpoint peculiar events that require
the administrators attention, without any need for models of the typ-
ical sensors’ signals. Recent proposals take advantage of frequency
analysis to monitor the devices energy consumption and identify ab-
normalities. A typical approach is to decompose the device’s con-
sumption using Fourier transform and detect the outliers using clus-
tering techniques [1, 2, 3]. The problem is that these methods suffer
from a high false positive rate, because they assume a constant pe-
riodicity in the data (e.g. office hours and weekdays) which is often
incorrect (e.g. extra hours at work, holidays). Another take at this
problem would be to use fault detection in buildings, for which there
has been numerous works [4, 5, 6]. However, it is hard to find in
the literature a suitable method that stays usable in a non-stationary
context or when there is no model at all.

Our proposal is fundamentally different in that it combines
non-stationary analysis of the power-draw signals with a method for
anomaly detection that relies on some computed devices’ intrinsic

relationships. The intuition is that each service provided by the
building requires a minimum subset of devices. Within a subset,
devices should be used at the same time when the corresponding
service is needed, and anomalies are to be found when devices do
not share their usual activity pattern. Energy saving opportunities
could hence appear; for instance, office comfort is attained through
sufficient lighting, ventilation, and air conditioning and they should
all be turned off together when the room is emptied. If not, this
has to be detected as an anomaly. However, because of the lack of
models, one should not expect prior knowledge of the behavior of
the devices.

Technically, the first ingredient is to use complete Ensemble
Empirical Mode Decomposition (E-EMD) [7, 8], a non-stationary
decomposition of signals, so as to exhibit patterns of activities of
devices in various domains in frequency. Thanks to that, we are
able to estimate correlations between signals in spite of their non-
stationarity. By monitoring the inter-device correlations over time
we extract the normal behavior of the devices, then we detect anoma-
lous electricity consumption by identifying sudden drops of correla-
tion between devices that are usually highly correlated.

2. ANALYZED DATA

Data collected at the Engineering Building 2 of the University of
Tokyo will be used to illustrate and validate the method. The build-
ing is a 12-story building where electricity consumption of the light-
ing and HVAC (Heat Ventilation Air Conditioner) systems of 231
rooms is monitored by 135 sensors. The HVAC systems are of two
types: EHP (Electrical Heat Pump) and GHP (Gas Heat Pump). The
5 GHPs of the dataset serve 154 rooms, whereas the EHP and light-
ing systems serve only pairs of rooms and they are independently
controlled by the rooms users.

The dataset contains 10 weeks of data starting from June 27th

2011 and ending on September 5th 2011. This period of time is
particularly interesting for two reasons; in Tokyo, the summer is
the most energy-demanding season, and, the building manager ac-
tively works to curtail energy usage as much as possible due to the
Fukushima nuclear accident.

Furthermore, this dataset is a valuable ground truth to evaluate
the proposed method. Since the light and HVAC of the rooms are
directly controlled by the room’s occupants, we expect the method
to uncover verifiable devices relationships.

3. METHODOLOGY FOR ANOMALY MINING

The activity of the devices in a building is mainly driven by the
building office hours and working days. Therefore, they share sim-
ilar daily and/or weekly patterns that hide the intrinsic correlations
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Fig. 1. Overview of the steps 1 to 3 of the proposed method for
uncovering devices intrinsic relationships.

of their use and could mislead simple approaches to group devices
according to their use, as already observed in [9]. The method pro-
posed here uses non-stationary analysis with E-EMD so as to sepa-
rate signals in modes for which estimating correlations is relevant. It
consists of 4 steps: 1) time series from each device are decomposed
in oscillatory functions (called IMFs, see 3.1) using E-EMD; 2) a
careful study shows how to aggregate IMFs into several modes of
devices’ behavior; 3) correlations between devices are estimated on
each mode, so as to uncover the intrinsic relationships between de-
vices; 4) a robust anomaly detection method is used to mine anoma-
lous device’s behaviors. The first 3 steps are sketched in Fig. 1.

3.1. Decomposition with E-EMD of energy signals

Empirical Mode Decomposition (EMD) [10] is an adaptive and
data-driven method designed to decompose non-stationary and/or
non-linear signals without requiring to set a priori basis functions or
tuning parameters. It finds an additive decomposition of a signal into
a set of non-stationary oscillatory components called intrinsic mode
functions (IMFs) satisfying two conditions: (1) an IMF contains the
same number of extrema and zero crossings (or differ at most by
one); (2) the amplitude of its oscillations are symmetric around zero.
For that, EMD proposes an iterative algorithm that extracts IMFs
one by one, starting from the IMF with locally the highest frequency
that can be extracted from the signal. The computed IMF is removed
from the signal and the residual is used as input for the next iteration.
The process stops when the residual becomes a monotonic function,
from which no more IMF can be extracted. The algorithm is re-
called in Table 1; an implementation is available in the EMD tool-
box: http://perso.ens-lyon.fr/patrick.flandrin
/emd.html. The result of EMD on a signal X(t) is a set of IMFs

• Input signal X(t); initialize X1 = X and k = 1.
• Iteratively on k, compute ck(t) by using Sifting on ρm with ρ1 = Xk:

1. Identify all the local maxima and minima of ρm(t).

2. Compute its upper (resp. lower) envelopes by an interpolation of the
local maxima (resp. minima) using interpolation.

3. Compute the local trendQm(t) as the average of the upper and lower
envelopes.

4. Extract the local oscillations and update ρm = ρm(t)−Qm(t).

5. If ρm is not an IMF (satisfying the two required conditions), iterate
Sifting from step 1 for ρm+1, until the outcome is an IMF.
If ρm(t) is an IMF, set ck(t) = ρm(t), and extract the residual
Xk+1(t) = Xk(t)− ck(t).

• Increase k to k + 1 and go back at applying Sifting on Xk .
• Stop the iterations on k when residual Xk+1(t) has no more oscillations,
at index K + 1 and set the final residual to be rK(t) = Xk+1(t)

Table 1. Summary of classical EMD algorithm [10].

ci and the final residue rK , such as: X(t) =
∑K

k=1 ck(t) + rK(t).
Applying classical EMD to typical power-draw signals, some

unexpected difficulties appear because these signals feature long in-
tervals of consecutive zeros. Fig. 2a depicts the results of EMD with
the 2-day electricity consumption of the lights in an office. Since the
office is unoccupied at night, the lights are turned off, and the corre-
sponding signal is at 0. These flat parts of the signal are problematic
for classical EMD: it tries to decompose the flat part in oscillations
(as can be seen especially for IMF1 and IMF2 of Fig. 2a) which
are irrelevant. Also, this causes a kind of mode mixing because low
frequency appears over these intervals in otherwise high frequency
IMFs.

In order to overcome this difficulty, we take advantage of a vari-
ant of EMD called Ensemble Empirical Mode Decomposition (E-
EMD) [7] that was further refined in [8] as a complete E-EMD. This
algorithm computes EMD on an ensemble of white noise-added sig-
nal and the mean result is the final IMFs. Because of the added
noise, the sifting algorithm sees extrema on the intervals where the
signal is flat, and extracts here only noise instead of low frequency
oscillations. This solves the aforementioned problem and provides
relevant IMFs, which are almost flat where the signal is zero. Fig. 2b
depicts the result of complete E-EMD for the same 2-day long light
energy consumption, and one can see that E-EMD provides more
meaningful results than the classical EMD.

3.2. Aggregation of IMFs in modes

Applying complete E-EMD to energy consumption signals, we end
up with a set of IMFs that are the consumption patterns of each de-
vice. In order to understand the meaning of the consumption pat-
terns, we need to be able to compare the behaviors of different de-
vices at corresponding frequencies. For that, we aggregate IMFs
into modes defining relevant frequency domains. These domains,
described hereafter, are decided by manual inspections of the IMFs
of different power-draw signals, and could not have been set before
performing such a decomposition, or doing simple filtering in the
frequency domain. We observe four frequency domains that high-
light different characteristics of the devices and we sum together the
IMFs in each domain. Let us writeXB

j (t) the mode in the frequency
domain B (standing for H,M,L or T respectively for the four do-
mains proposed hereafter) of device j (j going from 1 to d the total
number of devices):
- High frequencies (B = H): the sum of the IMFs with a mean pe-
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Fig. 2. Results of EMD and E-EMD for the same signal.

riod lower than 20 minutes capture the noise.
- Medium frequencies (B = M ): the sum of the IMFs with a mean
period between 20 minutes and 6 hours stand for the patterns with
a period shorter than the usual office hours thus they convey the de-
tailed devices usage.
- Low frequencies (B = L): the sum of the IMFs with a mean period
between 6 hours and 6 days represent the daily pattern common to
all the devices.
- Residual Trends (B = T ): the residual data rK obtained by E-
EMD highlights the trend of the devices.

Note that, in the example shown in Fig. 1, the correlation coef-
ficient of the raw signals Xi and Xj is 0.57 and would suggest that
they are highly correlated. However, the comparison of the corre-
sponding modes provides new insights; the two devices are poorly
correlated at high and medium frequencies (respectively −0.01 and
−0.04 for modes XH and XM ) but highly correlated at low fre-
quencies (correlation for XL’s is 0.79) meaning that these devices
share a similar daily pattern, but do not have an intrinsic correlation.
It is thus important to separate these modes to analyze the devices
behaviors and uncover intrinsic relationships.

3.3. Uncovering Devices Intrinsic Relationships

The domains were chosen so as to uncover similarities between de-
vices used at the same time. Our next step is to quantify these simi-
larities. Let us first define n windows in time that cover the available
data; it defines n time bins noted u going from 1 to n. Then, let us
compute the pairwise correlations of modesXB

j (t) on each window;
we note CB,u

i,j these correlation matrices, with i and j ranging from
1 to d. Each line of CB,u

i,j quantifies the behavior of the device i in
the chosen frequency domain B at a given time bin u, through its
relationship with the other devices. These correlation matrices form
the basis for the proposed method to track the behavior of devices

and to search for misbehavior.
We define four reference correlation matrices to represent the

normal behavior of the devices. They are computed as

RB
i,j = medianu(C

B,u
i,j ) = median(CB,1

i,j , ..., C
B,n
i,j ).

3.4. Anomaly Detection

For each device i, a distance lB,u
i is computed to measure the devia-

tion – in terms of correlation coefficients with all the other devices –
between the reference RB

i,∗ previously introduced and the correla-
tions CB,u

i,∗ measured at time bin u:

lB,u
i =

(
d∑

j=1

wij |CB,u
i,j −R

B
i,j |p

)1/p

where the weights read wij = RB
i,j/
∑d

k=1R
B
i,k. We use these

weights to give more importance to events characterized by a sudden
drop in correlations between devices usually highly correlated than
to events characterized by a sudden increase in correlations between
devices usually uncorrelated (which are probably coincidences).

We monitor this distance over several time bins, and detect ab-
normal device behaviors as outlier values. For that, a robust out-
lier detector based on Median Absolute Deviation (MAD) [11] is
implemented. MAD is defined as: MAD(li) = bmedian(|li −
median(li)|) where the constant b is usually set to 1.4826 for con-
sistency with the usual parameter σ for Gaussian distributions. The
device i at time u is reported as anomalous if it satisfies the follow-
ing:

lB,u
i > mediant(l

B
i ) + τ MAD(li)

where τ is a parameter that tunes the detector sensitivity. Empir-
ically, p = 4 yields the best results, inhibiting small differences
between CB,u

i,j and RB
i,j but emphasizing the important ones.

4. RESULTS

4.1. Devices Intrinsic Relationships

This section shows the benefits of comparing energy consumption
data at the four proposed frequency bands. We here split the dataset
in n = 10 bins of 1 week long and compute, for each bin, the 4 cor-
relation matrices corresponding to each frequency band. We thereby
obtain the four reference matrices (Fig. 3). To display the matrices,
devices are ordered by types (EHP-GHP-Light) forRH andRT , and
by location proximity for RM and RL.

As could be expected, RH reveals only noise in the data and
does not provide any help to determine the inter-device usages
(Fig. 3a).

For the medium frequencies (RM ) the high correlation coeffi-
cients are clearly concentrated along the diagonal (Fig. 3b). Since
devices serving the same or adjacent rooms are nearby in this dis-
play ofRM , this means that nearby sensors (typically two sensors in
the same room) are usually used in concert. The medium frequency
band successfully captures the devices intrinsic relationships. Con-
sidering this reference matrix as an adjacency matrix of a graph, in
which the nodes are the devices and the links’ weights the correla-
tion coefficients, we identify the clusters of strongly correlated de-
vices using a community mining algorithm [12]. Most clusters have
only two devices, namely the light and HVAC serving the same pair
of room. Still, clusters that are composed of more devices are found.
For example a cluster contains 3 HVAC systems serving the three
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Fig. 3. Reference matrices RB for the 135 power-draw signals. For RH and RT , devices are ordered by types for display; for RM and RL,
devices are ordered by locations for display.
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server rooms that are managed similarly. Interestingly, we also ob-
serve a couple of clusters that consist of independent devices serving
adjacent rooms belonging to the same lab. The bigger cluster con-
tains 33 devices that are 2 GHP devices and the corresponding lights.
All that confirms that RM identifies and highlights the hidden inter-
device usage relationships.

For low frequencies, RL shows no particular structure (see
Fig. 3c).

The residual data contains the weekly trend, and no informa-
tion about intrinsic device relationships (see Fig. 3d). Surprisingly
though, by ordering RT in the order of the type of the devices, two
major clusters are apparent visually. The first cluster consists of
HVAC devices and the second one contains only lights. An in-depth
examination of the data reveals that the consumption of both the
EHP and GHP devices is driven by the outside temperature. How-
ever, the use of light is independent from the outside temperature
thus the lighting systems follow a common trend different from the
EHP/GHP one.

4.2. Identified Anomalies

Let us now report results for the proposed anomaly detection, ap-
plied to the medium frequency domain which is the more relevant
for inter-device usage patterns. The dataset in now split in n = 70
bins of 1 day long. Parameter τ is set to 5, in order to keep the false
alarm rate low. All the alarms were manually inspected to check for
ground truth.

The method reported 9 alarms corresponding to high power us-
age; this, despite the post-Fukushima measures to reduce the build-
ing energy consumption. As an example, Fig. 4a depicts the electric-
ity consumption of the light and EHP in the same room. The detector
reported these two devices as anomalous because their usually strong
relationship is “broken” when the EHP is turned off at night and the
light is left on. This anomaly stands for a waste of electricity. The
top-priority reported anomaly is caused by the 10 days long constant
use of an EHP and this waste of electricity accounts for 165 kWh.

It is also possible to detect anomalies corresponding to abnor-
mally low power use; the method reports 6 of them. Upon further
inspection, we notice that it corresponds to device failures or energy
saving initiatives from the occupants – likely due to electricity con-
cerns in Japan. One behavior of this type is displayed in Fig. 4b: the
room is occupied at the usual office hours (indicated by light usage)
but the EHP is not on in order to save electricity.

On the whole, the proposed methodology, going from raw sig-
nals to the anomaly detection, is able to find relevant anomalies in
energy consumption, without resorting to prior knowledge of ex-
pected behavior of the devices.

5. CONCLUSIONS

Administrators of large buildings are overwhelmed with the data
streams sent by the numerous sensors monitoring the buildings in-
frastructures. Our proposed method and our experiments reveal two
key benefits of using E-EMD to monitor building data. First, E-EMD
allows us to analyze numerous non-stationary signals without prior
knowledge of the dataset. Second, E-EMD overcomes the difficul-
ties faced while applying the classical EMD to the signals contain-
ing flat parts. Thereby, using E-EMD we uncover four frequency
domains that expose distinct features of the monitored devices. Cor-
relations of the medium frequency part of the devices signals are
found to accurately measure the inter-devices relationships. It en-
ables us to design an unsupervised anomaly detector that identifies
abnormal device usages. Our evaluation with 10 weeks of real data
shows that the proposed detector is a valuable help for administrators
as the majority of the identified anomalies stand for energy waste.
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