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ABSTRACT

Frequency control is essential to maintain the stability and
reliability of power grids. For decades, generation side con-
trollers, e.g., isochoronous governors and automatic genera-
tion controllers, have been used to stabilize the frequency of
power systems, which, however, incur high operational costs.
In smart grids, demand response can be used to control fre-
quency and thus reduce the grids’ dependency on expensive
controllers. Despite of its economic advantages, the synchro-
nization problem, which is due to the simultaneous responses
of smart appliances, becomes the main barrier to implement-
ing frequency responsive demand control in reality. In this
paper, we propose a distributed control algorithm for smart
appliances, based on the randomized frequency monitoring
and a baseline hysteresis algorithm, to solve the synchroniza-
tion problem. We provide analytical results to characterize
the influence of distributed demand response on the system
frequency dynamics. Finally, we validate our analysis and
demonstrate the effectiveness of our proposed algorithm via
simulations on the Ireland power system.

Index Terms— Smart grid, demand response, frequency
control, distributed algorithm.

1. INTRODUCTION

Through computer-based control and automation, smart grid
offers technical, economic and environmental advantages by
improving reliability, lowering operational costs, and reduc-
ing greenhouse gas emissions of power systems. In partic-
ular, demand response is an effective mechanism to manage
users’ electricity consumptions in response to supply condi-
tions, e.g., reducing power consumptions at critical times or
varying them in response to market prices [1]. In this pa-
per, we focus on exploring demand response for frequency
control, a kind of emergency service for the system opera-
tor during system failures and/or unplanned outages when the
system frequency deviates from its nominal value. For in-
stance, when the system loses part of its generation power, or
the demand increases drastically, the system frequency will
drop below its nominal value and the system experiences an
under-frequency event. To restore to the nominal frequency,
traditional controllers, e.g., isochoronous governors and au-

Fig. 1: Synchronization problem.

tomatic generation controllers are used to automatically in-
crease the output power of generation units [2]. However, em-
ploying these controllers is very costly, since the system op-
erator needs to procure expensive regulatory and spinning re-
serve services [3]. Besides the generation side control, smart
appliances in the demand side can also be used to restore the
frequency to its nominal value [4], by detecting frequency de-
viation and shedding their loads accordingly. Using demand
response to recover the system frequency is more advanta-
geous than traditional controllers by two main reasons. First,
traditional controllers recover the system frequency in tens of
seconds, while demand response reduces this time to a cou-
ple of seconds [5]. Second, demand response reduces the
required amount of reserves and thus the system operational
costs [4].

Despite of the advantages of frequency control via de-
mand response, a synchronization problem needs to be ad-
dressed. The synchronization problem refers to simultaneous
responses of appliances upon a contingency which could po-
tentially lead to the system frequency oscillations. In order
to illustrate this problem, we consider the algorithm reported
by Pacific Northwest National Laboratory [6], and implement
it on the Ireland power system (for which the more details
will be given in Section 6). In this algorithm, smart appli-
ances continuously monitor the system frequency and shed
their loads when the system frequency drops below a lower
threshold, i.e., 49.95Hz, and remain in the off state until the
system frequency goes up to an upper threshold, i.e., 50.01Hz.
Fig. 1 shows the system frequency dynamics after a contin-
gency, from which the frequency oscillation is observed. This
phenomenon is due to the fact that all appliances sense and

5233978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Fig. 2: Schematic of an aggregated power system model.

respond at the same time when the frequency reaches each
of the two frequency thresholds. In this paper, we propose
a novel distributed control algorithm to tackle the synchro-
nization problem by randomizing the responses of smart ap-
pliances. It is worth noting that a handful of randomized al-
gorithms have been investigated in the literature, e.g., [7]-[9];
however, these works are all based on simulations while no
analytical results on the algorithm performance are provided
therein. To implement randomized demand responses in prac-
tice, we need to choose appropriate randomization parameters
given the system of interest, which is not feasible without a
rigorous analysis on the system frequency dynamics.

2. FREQUENCY DYNAMICS IN POWER GRID

In this paper, we study the power system dynamics under the
so-called synchronous operating regime where the whole sys-
tem operates under a single system-wide frequency, even dur-
ing contingencies [10]. Therefore, we can model the power
system in an aggregated form, as illustrated in Fig. 2, where
Pm(t) and Pd(t) represent the aggregated mechanical power
from the prime movers and demand power consumption, re-
spectively. Let f(t) denote the system frequency with the
nominal value of f0 at time t = 0. According to the intro-
duced model in [10], we have

Pd(t) = Pa(t) +

(
f(t)− f0

f0

)
KfP0, (1)

where Pa(t) represents the aggregated demand power con-
sumption under the nominal frequency and voltage with an
initial value of P0 at time t = 0. The second term on the right
hand side of (1) represents the demand power change due to
the system frequency deviation, where Kf represents the fre-
quency damping coefficient that measures the sensitivity [12].

At the generation side, the system dynamics are governed
by the physics of motion and described by a so-called swing
equation, which is given by [10]:

2H

f0

df(t)

dt
= Pm(t)− Pd(t), (2)

where H denotes the stored energy in the generator in Joule.
By substituting (1) into (2), we obtain

2H

f0

df(t)

dt
= Pm(t)− Pa(t)−

(
f(t)− f0

f0

)
KfP0. (3)

Next, we consider the frequency dynamics upon a system
contingency, during which the generation power and demand
become imbalanced. Without loss of generality, we assume

that the generator loses A0 amount of mechanical power at
time t = 0, which is a typical scenario in practice. Sup-
pose that the aggregated demand power consumption under
the nominal situation is not changed over time, i.e., appli-
ances do not respond by shedding themselves. We thus have
Pm(t)− Pa(t) = −A01{t>0}, where 1{·} denotes an indica-
tor function. Consequently, (3) can be re-written as

2H

f0

df(t)

dt
= −A0 −

(
f − f0
f0

)
KfP0, t ≥ 0. (4)

By solving the above differential equation, we obtain

f(t) = f0 −
A0f0
KfP0

(1− e−αt), t ≥ 0, (5)

where α = (KfP0)/(2H). The above frequency equation in-
dicates that a generation power loss ofA0 eventually results in
an (A0f0)/(KfP0) amount of frequency loss in steady state;
and it changes the system frequency exponentially fast. Note
that in (5), we have assumed A0/(KfP0) < 1 since in prac-
tice A0 � P0. For convenience, we define gα(A, s) to quan-
tify the effect of generation capacity loss on the system fre-
quency, i.e.,

gα(A, s) ,
f0

KfP0
A(1− e−αs), s ≥ 0. (6)

Thus, without considering the response of appliances, the sys-
tem frequency in (5) is expressed as f(t) = f0 − gα(A0, t).

3. DEMAND RESPONSE AND FREQUENCY
CONTROL

In this section, we introduce our distributed frequency control
algorithm for frequncy responsive smart appliances.

3.1. Hysteresis Algorithm

We consider a power system consisting of M smart appli-
ances denoted by the setM = {1, · · · ,M}, with power con-
sumption of Ai for the ith appliance, i = 1, . . . ,M . It is
assumed that all smart appliances detect frequency deviations
in a distributed manner and respond independently based on a
hysteresis algorithm similar to that proposed in [7, 13], which
is described as follows. Let Si(t) ∈ {0, 1} denote the state
of appliance i at time t, where 0 and 1 indicate the off and on
states, respectively. The hysteresis algorithm with a given pair
of frequency lower and upper thresholds, denoted by fmin ≤
f0 and fmax ≥ f0, respectively, is given by

Si(t
+) =

 0 if Si(t) = 1 and f(t) < fmin;
1 if Si(t) = 0 and f(t) > fmax;

Si(t) otherwise.
(7)

where t+ denotes the time immediately after monitoring the
system frequency at time t. Therefore, each appliance will
introduce a positive (negative) effect on the system frequency
when it switches from an on (off) state to an off (on) state.
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3.2. Randomized Inter-Response Time

Existing works [6]-[9] have assumed that all smart appliances
continuously monitor the system frequency, which cause the
synchronization problem as shown in Fig. 1. In our de-
sign, we let each appliance i monitor and respond to fre-
quency deviations according to a discrete-time sequence ti =
(t1i , t

2
i , · · · ), where tji denotes the jth response time of appli-

ance i. Thus, the behavior of appliance i can be tracked by a
continuous-time counting process {Ni(t) : t ≥ 0}, defined by
Ni(t) =

∑∞
j=1 1{tji<t}

, where the indicator function 1{tji<t}
indicates whether the jth response of appliance i occurs be-
fore time t or not. Furthermore, to desynchronize responses,
we impose the constraint that each appliance must wait a ran-
dom time between any two consecutive responses. Specifi-
cally, we define the jth inter-response time of appliance i as
T ji = tji − t

j−1
i , where t0i , 0 by default. Then, we design

the inter-response time {T ji : j = 1, 2, · · · } for appliance i to
be independent and identically distributed (i.i.d.) exponential
random variables with mean λ−1i . As a result, Ni(t) becomes
a Poisson process with the rate of λi. Thus, (5) is modified as

f(t) = f0 − gα(A0, t) +

M∑
i=1

Ni(t)∑
j=1

X(tji )gα(Ai, t− t
j
i ). (8)

Now, we explain the impact of the generation power loss A0

and the aggregated power consumption of smart appliances,
denoted by Aa =

∑M
i=1Ai, on the system frequency. First,

consider the effect of A0 on f(t) by defining

A0 ,
KfP0

f0
(f0 − fmin). (9)

Form (5) and (7), it follows that if A0 > A0, smart appli-
ances will respond by shedding loads after the system fre-
quency drops below fmin at time t0 > 0, which is given by

t0 = − 1

α
ln

(
1− A0

A0

)
. (10)

Next, we study the effect of Aa on f(t) by defining

Amin , A0 −A0. (11)

From (8), it follows that if Aa ≥ Amin, the system fre-
quency recovers back to fmin at a certain time Tr ≥ t0,
which is termed the frequency recovery time and is defined
as the smallest t > t0 that solves the frequency equation
f(t) = fmin.

4. MEAN AND VARIANCE ANALYSIS OF THE
SYSTEM FREQUENCY

With the randomized frequency control algorithm proposed
in the previous section, the system frequency given in (8) is
a random process over time. To characterize f(t) for t ≥ t0,
we derive its mean and variance as a function of time with

the given system parameters. Due to the space limitations, we
provide the results without the proofs, which will be given in
the journal version of this paper.

Proposition 4.1 Given A0 > A0 and Aa ≥ Amin, the mean
value of the system frequency for t0 ≤ t ≤ Tr is given by

E[f(t)] = f0 − gα(A0, t) +

M∑
i=1

giα(Ai, t− t0), (12)

where giα(Ai, s) is given by

giα(Ai, s) =
f0

KfP0
Ai(1− h(α, λi, s)), (13)

with h(α, λ, s) defined as

h(α, λ, s) ,

 λe−αs − αe−λs

λ− α
if λ 6= α and s ≥ 0;

(λs+ 1)e−λs if λ = α and s ≥ 0.
(14)

The mean frequency given in (12) is due to both the deter-
ministic frequency dynamics without demand response and
that contributed by responses of all smart appliances, where
giα(Ai, t − t0) denotes the contribution of smart appliance
i ∈ M. The contribution of each appliance to frequency re-
covery takes effect only after t0 given in (10). This is due
to the fact that prior to t0, although smart appliances monitor
the system frequency, they do not respond by shedding them-
selves since f(t) > fmin. From giα(Ai, s) given in (13), it fol-
lows that the frequency restoration contribution of appliance
i is proportional to its power consumption Ai, but discounted
over time by a factor of h(α, λi, s).

Proposition 4.2 Given A0 > A0 and Aa ≥ Amin, the vari-
ance of the system frequency for t0 ≤ t ≤ Tr is given by

V ar(f(t)) =

M∑
i=1

(
f0Ai
KfP0

)2

v(α, λi, t− t0), (15)

where v(α, λ, s) , h(2α, λ, s)− h2(α, λ, s).

Proposition 4.2 characterizes the variance of the system fre-
quency as a function time t, which is the weighted sum of
individual appliances’ variance contributions v(α, λi, t− t0).

5. MEAN RECOVERY TIME AND EXPECTED
NUMBER OF RESPONDED APPLIANCES

In the section, we reveal how the different response rates of
smart appliances will impact on the frequency recovery time
as well as the number of appliances that shed loads during a
contingency.

First, we characterize the mean frequency recovery time
T r = E[Tr] by utilizing the frequency mean functionE[f(t)]
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obtained in Proposition 4.1. This is justified since in prac-
tical power systems, although there are many smart appli-
ances, their individual power consumptions are usually much
smaller than the aggregated system load; therefore, the vari-
ance of the system frequency given in (15) is practically very
small and thus can be safely ignored in our analysis . Hence,
we have the following proposition.

Proposition 5.1 Given A0 > A0 and Aa ≥ Amin, the mean
frequency recovery time T r is approximately equal to the
smallest t > t0 which is the solution of the frequency equa-
tion: E[f(t)] = fmin, where E[f(t)] is given in (12).

Next, we investigate the expected number of responded
smart appliances upon frequency recovery. For the conve-
nience of analysis, we further assume that the power sys-
tem consists of a set of different classes of smart appliances,
denoted by C = {1, . . . , C}. Let Mc, Ac, and λc be the
number of appliances in Class c ∈ C, the power consump-
tion and response rate of each appliance in Class c, respec-
tively. To be consistent with our previous notation, we con-
sider

∑C
c=1Mc = M . Moreover, let Nc(t) denote the num-

ber of appliances in Class c ∈ C which have responded by
shedding themselves by time t ≥ t0. We then state our result
in the following proposition.

Proposition 5.2 Given A0 > A0 and Aa ≥ Amin, the ex-
pected number of responded appliances from Class c ∈ C for
t0 ≤ t ≤ Tr is given by

E[Nc(t)] =Mc(1− e−λc(t−t0)). (16)

From Proposition 5.2, it immediately follows that the ex-
pected total amount of demand shed in Class c ∈ C at time
t0 ≤ t ≤ Tr is McAc(1− e−λc(t−t0)).

6. SIMULATION RESULTS

W consider the Ireland power system [14] with a peak power
of P0 = 5000MW, the nominal frequency f0 = 50Hz, fre-
quency coefficient Kf = 2.5, and α = 0.4. Suppose there
are two classes of smart appliances: Class 1 consists ofM1 =

Fig. 3: Simulated system frequency dynamics.

Fig. 4: Recovery time and number of responded appliances.

20000 water heaters and/or cloth dryers with a typical power
consumption A1 = 2KW and a response rate λ1; and Class 2
consists of M2 = 50000 refrigerators and/or freezers with a
typical power consumption A2 = 200W and a response rate
λ2. We set the frequency thresholds of the hysteresis algo-
rithm as fmin = 49.95Hz and fmax = 50.01Hz. Suppose
that the power system experiences a generation power loss of
A0 = 25MW at t = 0, which may correspond to e.g. the
failure of a large wind farm, e.g., Gruig plant in Antrim.

We simulate the system frequency dynamics after the
generation power loss with (λ1, λ2) = (0.03, 0.06) or
(0.06, 0.03). We perform the simulation for each of the
two settings and plot the mean frequency curve as well as
the upper and lower extreme values of the frequency in Fig.
3. We observe that for both settings, the system frequency is
recovered in less than 13 seconds. It is also observed that the
analytical frequency mean based on Proposition 4.1 closely
matches the experimental mean.

Next, with fixed λ1 = 0.1 and by varying λ2 from 0.1
to 0.5, we verify the mean frequency recovery time T r and
the expected number of responded appliances E[N1(Tr)] and
E[N2(Tr)] given in Propositions 5.1 and 5.2 by simulations.
As shown in Fig. 4, the simulation results closely fit to our
analytical results.

7. CONCLUSION

In this paper, we proposed a randomized demand response
algorithm to help the main grid stabilize the system frequency
during contingencies. The proposed algorithm is completely
distributed in smart grids, and thus does not require any cen-
tralized control or overlaid communication infrastructure.
We develop a theoretical framework to analyze the system
frequency dynamics based on the aggregated power system
model. In particular, we derive the closed-form mean and
variance of the system frequency as a function of time given
the smart appliances’ response rates. Based on these results,
we characterize the mean recovery time and the expected
number of responded appliances. We hope that our results
will provide useful guidance to implement distributed demand
response for reliable frequency control in power systems.
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