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ABSTRACT

Demand-side management will play a crucial role in balancing the

energy generation and demand in future smart grids. In this pa-

per, game-theoretic demand-side management algorithms are pro-

posed for energy consumption scheduling under load uncertainty.

The demand-side optimization and scheduling problem is formu-

lated as a noncooperative cost minimization game among the end-

users and an iterative algorithm that averages over the load uncer-

tainty is proposed for solving it. The proposed algorithm is proven

to converge to a Nash equilibrium. Simulation results show that tak-

ing into account the uncertainty in the load reduces significantly the

load peak-to-average ratio and the hourly variation of the aggregate

load profile.

Index Terms— Distributed demand-side management, load un-

certainty, noncooperative game theory, smart grid.

1. INTRODUCTION

Demand-side management is based on the premise of giving the con-

sumers an incentive to alter their energy usage by offering lower

electricity prices at off-peak hours. The goal is to shift the load from

peak hours to off-peak hours, thus, providing a smoother and more

even aggregate hourly load profile. This facilitates utility’s task of

dispatching generation to match the demand and reduces the overall

cost of generating electricity. In this paper, we propose a distributed

game-theoretic cost minimization based demand-side optimization

and load scheduling method that takes into account load uncertainty.

Game-theoretic and other distributed demand-side management

schemes have been proposed in [1–5]. A recent review of game

theory-based demand-side management methods can be found in [6].

However, most of the above works assume that the end-users have

full knowledge of their future load in the scheduling horizon. This is

not a very realistic assumption. In this paper, we relax this assump-

tion regarding the users’ non-adjustable loads, such as refrigerators,

freezers, TVs, computers, and various other domestic appliances and

devices, by assuming that each user employs a prediction algorithm

to predict its hourly aggregate non-adjustable load for the scheduling

horizon. In particular, we assume that each predictor provides a set

of samples from the non-adjustable load distribution, thus, providing

also information about the uncertainty in the predicted load.

Distributed demand-side management with load uncertainty has

been considered in [2]. Moreover, single user demand-side man-

agement with price uncertainty has been considered in [7]. In [2]

the utility sets the amount of electricity provided to the customers
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and the electricity prices according to the customer demands and

satisfaction while taking into account the uncertainty in the load.

However, the customers are price takers and hence do not take into

account the influence of their actions on the prices. In this paper, we

extend the distributed demand-side management framework in [1]

by introducing a method that takes into account the uncertainty in

each user’s non-adjustable hourly load. In this proposed method the

users are price anticipators and thus they consider the influence of

their actions on the overall cost.

The contributions of this paper are as follows. We formulate

the demand-side optimization problem as a noncooperative electric-

ity cost minimization game among the end-users. In our formulation

the user payoffs depend on the expected value of the overall cost

of all users. The proposed payoff functions average over the non-

adjustable load uncertainty. We consider scheduling of two different

types of adjustable loads: loads whose instantaneous power is freely

adjustable within some interval and loads following a fixed operat-

ing and power cycle. We propose an iterative optimization algorithm

for solving the game. We prove that it converges to a Nash equilib-

rium starting from any feasible initial loads. We provide simulation

results showing that taking into account the uncertainty in the non-

adjustable load reduces significantly the peak-to-average ratio (PAR)

and variation of the aggregate daily load profile while at the same

time reducing the cost for the end-users.

The paper is organized as follows. In Section 2 we formulate the

noncooperative electricity minimization game, propose an iterative

algorithm for solving it, and prove that the algorithm converges to a

Nash equilibrium. Simulation results are presented in Section 3 and

finally concluding remarks are given in Section 4.

2. DISTRIBUTED DEMAND-SIDEMANAGEMENTWITH

LOAD UNCERTAINTY

We assume that each end-user has a set of non-adjustable and ad-

justable loads. Non-adjustable loads are loads whose instantaneous

power or starting time cannot be adjusted. Loads belonging to this

category are, e.g., refrigerator, freezer, oven, microwave and other

cooking appliances, as well as TVs, computers and other entertain-

ment devices. In addition to non-adjustable loads, we consider loads

whose instantaneous power, starting time, or both can be adjusted.

In particular, we consider two different types of adjustable loads:

1. Loads whose instantaneous power can be freely adjusted

within some interval [pmin, pmax]. Examples of such loads
are plug-in vehicle (PEV) charging and electric water heaters.

These loads will denoted by T1.

2. Loads following a fixed operating cycle such that the instan-

taneous power is predetermined during operation, i.e., pt
a is
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fixed for t = 1, . . . , Ta where Ta is the time it takes to com-

plete the task. Thus, the only adjustable parameter is the start-

ing time of the load. Examples of such loads are washing ma-

chines, dishwashers, and clothes dryers. These loads will be

denoted by T2.

We assume that the cost of electricity for the end-users is pro-

portional to the cost of generating the electricity for the utility,

hence, it is in the interest of the end-users to minimize the generat-

ing cost. Moreover, we assume that the price each end-user pays is

proportional to the amount of electricity it uses, i.e., the overall price

charged by the utility is divided among the end-users according to

the proportion of electricity each has used. The problem can be

formulated as a noncooperative electricity cost minimization game

consisting of (without any loss of generality we assume an hourly

scheduling resolution throughout this paper):

• A finite set of end-users n = 1, . . . , N .

• A set of energy usage strategies Xn for each end-user. A

strategy xn ∈ Xn defines the adjustable load xh
n of end-user

n for each hour h = 1, . . . , H . Let x−n denote the strategies

of all the other users except n.

• Payoff functions ρn(xn; x−n), n = 1, . . . , N , that define
the user payoffs for the joint strategies:

ρn(xn; x−n) =
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where lhn is the non-adjustable load of user n for hour h, l
h =

PN

n=1
lhn, and Ch(·), h = 1, . . . , H , are convex functions,

e.g., piecewise linear or quadratic functions, representing the

cost of generating the electricity for each hour.

We assume that each user has a predetermined amount of ad-

justable load to schedule for each particular day, i.e.,
PH
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strategy. Consequently, in order to maximize their payoff the goal of

the end-users is to minimize the expected overall cost of generating

the electricity:
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where fh(·), h = 1, . . . , H , are distributions of the aggregate non-
adjustable load for each hour.

However, in practice, the non-adjustable load distributions

fh(l), h = 1, . . . , H , are unknown. Here, we assume that each
end-user employs a load prediction algorithm that provides sam-

ples from its non-adjustable load distribution. Bayesian neural

networks [8], Gaussian processes [9], and particle filters [10] are

examples of such prediction techniques. Let l̂hn,k, n = 1, . . . , N ,
k = 1, . . . , K, denote samples from the local non-adjustable load
distributions of the end-users. The utility (or the end-users) obtain

samples l̂hm,m = 1, . . . , M , from the aggregate non-adjustable load
distribution by drawing a random sample of size M independently

from each local set l̂hn,k, n = 1, . . . , N , k = 1, . . . , K, with replace-
ment and then summing these samples item-wise (i.e., sum over the

N local loads). Given the random sample l̂hm, m = 1, . . . , M , the
cost function in (2) can be approximated as follows:
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Since the sum of convex functions is convex, the cost function in (3)

is convex given that Ch(·)’s are convex.
However, each appliance or task may have time constraints on

its usage. Consequently, the minimization problem is, in practice, a

constrained optimization problem with equality and inequality con-

straints:

min
xn,a
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s.t. pa,min ≤ xh
n,a ≤ pa,max,∀a ∈ T1,∀h ∈ Hn,a,

xh
n,a = 0, ∀a ∈ T1,∀h /∈ Hn,a,

xh+t−1
n,a = pt

a, t = 1, . . . , Ta, ∀a ∈ T2, for one h ∈ Hn,a,
(4)

where Hn,a is the set of hours when the load a of user n, such as
PEV charging, can be executed (T1) or started (T2). In this paper,

we solve this problem separately for each load a. For T1 loads this is

a constrained convex optimization problem that can be solved, e.g.,

using interior-point methods [11]. For T2 loads the problem is a

binary integer programming problem that can, in this case, be solved

using brute force search since the number of feasible strategies is

relatively small.

Following the distributed approach in [1], the end-users min-

imize the optimization problem in (4) in sequential order by con-

structing a better reply path x
1, x2, . . . , xL in which the objective

function, g(x) = 1

M
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in (4) is strictly decreasing, i.e., g(xt+1) < g(xt). In other words,
each end-user n minimizes (4) with respect to xh

n,a, h = 1, . . . , H ,

∀a ∈ An, while the adjustable loads of the other end-users x
h
−n,a =

{xh
u,a | u = 1, . . . , N, u 6= n,∀a}, h = 1, . . . , H , are kept

fixed. User n then transmits its new local adjustable loads xh
n, h =

1, . . . , H , where xh
n =

P

a∈An
xh

n,a, to the other users provided

that the objective function is decreased. The next user in the se-

quential order then minimizes (3) with respect to its local adjustable

load. This iterative process is continued until none of the users can

improve its reply and decrease the objective function.

Theorem 1. The distributed sequential iterative optimization pro-

cess converges to a Nash equilibrium, ρn(x∗

n; x∗

−n) ≥ ρn(xn; x∗

−n),
∀n, xn ∈ Xn, of the noncooperative electricity cost minimization

game starting from any feasible random initial loads. Moreover,

if the cost functions Ch(·) are strictly convex, the weighted sum of
payoff functions is diagonally strictly concave, and there are no T2

loads, the Nash equilibrium is unique.

Proof. Let us consider a situation in which all the T2 loads have

been scheduled and thus the chosen strategies for T2 loads are fixed.

The remaining T1 loads form a concave N -person game since the
negative of the cost function, i.e., −Ch, is concave and the feasible

set for T1 loads is convex. The existence of a Nash equilibrium for

concaveN -person game follows from Theorem 1 in [12]. Moreover,
if the cost functions are strictly convex and the weighted sum of
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payoff functions is diagonally strictly concave [12], the uniqueness

of the Nash equilibrium follows from Theorem 2 in [12]. Thus, there

exists a Nash equilibrium for the concave game among T1 loads for

each given T2 load strategy. Now, since the strategy set for T2 loads

is finite, the better reply path for the game involving both T1 and

T2 loads cannot be infinitely continued or cycle back to a previous

strategy profile which concludes the proof.

Consequently, the distributed algorithm converges to a solution

in which no user can unilaterally decrease its own cost.

3. SIMULATION RESULTS

We consider distributed demand-side optimization in a scenario con-

sisting ofN = 10 domestic dwellings (i.e., end-users) each having a
number of different adjustable and non-adjustable daily loads. Each

dwelling has 2 residents and various appliances including TVs, com-

puter, refrigerator/freezer, oven, microwave, electric sauna heater,

among others. We model the daily load in each dwelling using the

usage statistics based load model proposed in [13]. This model sim-

ulates the daily load with one minute resolution through simulation

of appliance use and by taking into account simulated resident activ-

ity. In addition to the above non-adjustable loads, each dwelling has

the following adjustable daily loads: PEV charging (T1: 9.9 kWh,

pmin = 0, pmax = 3.3 kW), washer/dryer (T2: 2.4 kWh, p = 0.8
kW, 3 h), and dishwasher (T2: 2.2 kWh, p = 1.1 kW, 2 h). PEV
charging can be scheduled to any hour of the day while the other

two loads can be scheduled to start at any hour of the day provided

that they can be completed within the same day.

We compare the proposed approach to an algorithm in which

the predicted non-adjustable load is assumed to be exact. This corre-

sponds to a scenario where the load predictor provides a single load

value that is then assumed to be the actual non-adjustable load. In

essence, the compared algorithm is a variant of the proposed scheme

with M = 1. Now, instead of restricting our results to a partic-
ular predictor, we simulate the load prediction using the aforemen-

tioned domestic dwelling load model to generate appropriate number

of load profiles for both methods. For the proposed algorithm, each

dwelling has K = 100 predicted hourly load values from which
theM = 10000 random samples from the aggregate non-adjustable
load profile are generated according to the procedure described in

Section 2. For the comparison method, each dwelling has one pre-

dicted hourly load which are all summed to obtain the aggregate

non-adjustable load.

Fig. 1 illustrates example hourly load profiles for both with and

without taking into account the uncertainty in the non-adjustable

load while scheduling the adjustable load. The cost function is a

piecewise linear functionCh(x) = 0.12x, for x ≤ 15, andCh(x) =
0.24x − 1.8, for x > 15, h = 1, . . . , 24. We can see that the re-
sulting daily profile is significantly smoother when the uncertainty

in the non-adjustable load is taken into account. This reduces the

utility’s cost for generating the electricity and makes the dispatching

of generation much easier. This is further illustrated by Fig. 2 that

depicts the PAR and variance of the hourly loads for 100 different

days. Moreover, Table 1 lists the mean cost, PAR, and load variance

values for the 100 days. The results show that taking the load un-

certainty into account reduces the PAR on average by over 20% and

the average load variance by over 48% for the piecewise linear cost

function. Table 1 lists the performance measures also for a quadratic

cost function Ch(x) = 0.02x2, h = 1, . . . , 24. In this case, the
average PAR is reduced by over 6.5% and average load variance by
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Fig. 1: Example hourly adjustable load profile for the algorithm

without load uncertainty (a) and with load uncertainty (b) taken into

account. The red curves show the mean (solid curve) and 95% confi-

dence interval (dashed curves) of the aggregate non-adjustable load.

The hourly load profile is smoother if the uncertainty in the non-

adjustable load is taken into account in the load scheduling.

34% when uncertainty in the non-adjustable load is taken into ac-

count.

Table 1 shows also that the overall cost of electricity for the end-

users is reduced by roughly 2% and 1.4%, respectively, for the piece-

wise linear and quadratic cost functions when the load uncertainty is

taken into account. Although the reduction in the cost appears to be

rather small for the end-users, the full reduction in the cost to the

utility due to smaller PAR and load variance is not entirely reflected

by the chosen cost model. Hence, the actual reductions in the cost

could, in practice, be taken into account in the cost function parame-

ters over a longer time span and thus the end-users could see a larger

decrease in their cost as well.

4. CONCLUSION

In this paper, we have proposed a distributed cost minimization

based demand-side optimization and scheduling scheme under load

5231



0 20 40 60 80 100
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

Day

P
A

R

 

 

Single value

Uncertainty

(a) Load PAR

0 20 40 60 80 100
5

10

15

20

25

Day

L
o

a
d

 v
a

ri
a

n
c
e

 

 

Single value

Uncertainty

(b) Load variance

Fig. 2: Load peak-to-average ratio (PAR) and load variance for 100

different days for the piecewise linear cost function. Both the PAR

and load variance are significantly lower when the load uncertainty

is taken into account. In practice, this would result in much lower

generation cost and easier generation dispatching for the utility.

Table 1. Mean cost, peak-to-average ratio (PAR), and variance of

the daily load profile with and without (single value) load uncer-

tainty taken into account. Taking the uncertainty into account in the

demand-side optimization algorithm reduces significantly the vari-

ance and PAR of the daily load profiles. In addition, the cost of

electricity to the end-users is reduced as well.

Algorithm Cost function Mean cost Mean PAR Mean
(EUR) variance

Uncertainty Piecewise linear 29.87 1.42 7.96
Single value Piecewise linear 30.46 1.78 15.54
Uncertainty Quadratic 52.95 1.41 3.03
Single value Quadratic 53.69 1.51 4.65

uncertainty. We formulated the problem as a noncooperative game

among the end-users and proposed an iterative algorithm for solving

it. The proposed optimization algorithms average over the uncer-

tainty in the load distribution. The proposed iterative algorithm was

proven converge to a Nash equilibrium. Our results show that taking

into account the uncertainty in the load reduces significantly the

PAR and variance of the hourly load profile. This reduces the cost

of generating the electricity and facilitates dispatching generation to

match the demand. Moreover, the cost for the end-users is reduced

as well.
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