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ABSTRACT
The envisioned smart grid aims to improve the interaction be-

tween the supply- and the demand-side of the electricity network,
resulting in a great optimization potential. In this paper, we pro-
pose a holistic-based, distributed day-ahead demand-side manage-
ment method that is suitable for energy markets subject to an external
regulation. Here, active subscribers solve the nonconvex problem of
deriving the bidding strategies that minimize their overall expected
monetary expense and simultaneously optimize eventual dispatch-
able energy generation and storage strategies. We show that, when
such users collaborate, they achieve greater saving with respect to
the corresponding user-oriented, selfish optimization. In this setting,
we propose a cooperative, distributed, and iterative algorithm pro-
viding the optimal bidding, production, and storage strategies of the
users, along with its convergence properties.

Index Terms— Distributed Dynamic Pricing Algorithm, Smart
Grid, Cooperative Demand-Side Management.

1. INTRODUCTION

Demand-side management (DSM) in the smart grid introduces ad-
vanced mechanisms for encouraging the demand-side to participate
actively in the network optimization process by modifying the time
pattern and the magnitude of the energy load demand [1]. DSM,
distributed energy generation, and distributed storage are consid-
ered increasingly essential elements for implementing the smart grid
concept and balancing massive energy production from renewable
sources. These concepts open up unprecedented possibilities for op-
timizing the energy grid and energy usage at different network levels.

In particular, day-ahead DSM techniques provide the supply-
side with an estimation of the amount of energy to be delivered to
the demand-side during the upcoming day. Nonetheless, pure day-
ahead approaches prove incapable of accommodating real-time fluc-
tuations from the expected energy consumption by the demand-side
users, as well as the randomness of their renewable sources. On
top of that, additional costs are incurred by the supply-side when the
consumption schedule is not correctly predicted by the users, and are
transferred to the demand-side in the form of penalty charges [2, 3].

This paper proposes a day-ahead demand-side bidding process
whereby the end users, possibly with dispatchable generation and
storage capabilities, minimize their expected monetary expense. In
order to do so, these users are connected not only to the power distri-
bution grid, but also to a communication infrastructure that enables
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bidirectional communication between their smart meters and the in-
dependent regulator of the day-ahead market. Building on the previ-
ous work [4], a two-stage pricing model is used, which combines: i)
a price per unit of energy related to the day-ahead bid energy needs
of the demand-side, and ii) a penalty system that aims at narrow-
ing potential real-time deviations from the negotiated energy loads,
providing thus an incentive for a more accurate demand prediction.

DSM techniques have been traditionally formulated from an
end-user oriented point of view. However, a collaborative approach
minimizing, e.g., the peak-to-average ratio (PAR) of the energy de-
mand or the total energy cost [5], can be more beneficial for all actors
in the energy grid. In this paper, we formulate the DSM design as a
nonlinear programming that minimizes the overall expected expense
incurred by the active demand-side of the network. In contrast to the
noncooperative method discussed in [4], which assumes a free mar-
ket behavior, the present approach needs to be externally regulated
in order to promote the cooperative bidding of demand-side users
in favor of a better performance. To solve the resulting nonconvex
optimization problem, we resort to the recent results in [6, 7] and
introduce a distributed dynamic pricing-based algorithm (DDPA)
that converges to a stationary solution of the problem under very
mild assumptions (always satisfied in practice). Nonetheless, the
resulting best-response-based update must be imposed as a protocol
to the demand-side users so as to avoid selfish deviations from it.

The rest of the paper is organized as follows. In Section 2 we de-
scribe the smart grid model, whereas the demand-side bidding pro-
cess is introduced in Section 3. In Section 4 we focus on the pro-
posed cooperative DSM method, which is compared with the corre-
sponding noncooperative game-theoretical formulation in Section 5.
Finally, Section 6 draws some concluding remarks.

2. SMART GRID MODEL

The modern power grid is a complex network that can be conve-
niently divided into [8, 9]: i) supply-side (energy producers and
providers), ii) central unit (regulation authority that coordinates the
day-ahead market and the proposed demand-side bidding process),
and iii) demand-side (end users). In this paper, we focus our atten-
tion on the demand-side of the smart grid, whereas the supply-side
and the central unit are modeled as simply as possible.

2.1. Demand-Side Model
Demand-side users are characterized in the first place by the per-slot
net energy consumption en(h), which indicates the energy needed
by user n to supply his appliances at time-slot h in the time period
of analysis, taking into account eventual non-dispatchable (renew-
able) energy resources that he may adopt. In order to tackle with
the uncertainties associated with future load demands and with re-
newable sources (when available), en(h) is modeled as a random
variable with pdf fen(h)(x) and cdf Fen(h)(x).
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Our demand-side model distinguishes between passive and
active users: the former resemble traditional energy consumers,
whereas the latter indicate those users participating in the demand-
side bidding process, i.e., reacting to changes in the cost per unit
of energy by modifying their day-ahead bidding strategies. For
convenience, we group the N active users into the set N and we
suppose that each one of them can derive his individual load statis-
tics from past energy consumption data measurements. Lastly, we
conveniently divide the time period of analysis into H time-slots.

2.2. Energy Generation and Storage Model

Let G ⊆ N be the subset of dispatchable energy producers. For
users n ∈ G, gn(h) ≥ 0 represents the per-slot energy production
profile at time-slot h. Introducing the energy production scheduling
vector gn ,

(
gn(h)

)H
h=1

, we have that gn ∈ Ωgn , where Ωgn is
the strategy set for dispatchable energy producers (see an example in
[10, Sec. II-B]). Besides, the production cost function Wn

(
gn(h)

)
gives the variable production costs incurred by user n ∈ G for gen-
erating the amount of energy gn(h) at time-slot h, with Wn(0) = 0.

Likewise, let S ⊆ N denote the subset of energy storers. Users
n ∈ S are characterized by the per-slot energy storage profile sn(h)
at time-slot h: sn(h) > 0 when the storage device is to be charged,
sn(h) < 0 when the device is to be discharged, and sn(h) = 0 when
the device is inactive. Introducing the energy storage scheduling
vector sn ,

(
sn(h)

)H
h=1

, it holds that sn ∈ Ωsn , being Ωsn the
strategy set for energy storers (see, e.g., [10, Sec. II-C]).

Finally, let us introduce the individual per-slot energy load

ln(h) , en(h)− gn(h) + sn(h) (1)

being the real-time energy flow between user n ∈ N and the grid at
time-slot h, with ln(h) > 0 when the user purchases energy from
the grid and ln(h) < 0 when he sells energy to the grid.

3. DEMAND-SIDE BIDDING SYSTEM

We describe next the proposed demand-side bidding process,
through which active users determine in advance their bidding,
dispatchable production, and storage strategies for the upcoming
time period of analysis.

3.1. Energy Load Bidding Model

Let us denote by ên(h) the per-slot bid net energy consumption, i.e.,
the day-ahead amount of energy (to be optimized) that user n ∈ N
commits to consume at time-slot h. Defining the bidding strategy
vector as ên ,

(
ên(h)

)H
h=1

, we express the bidding strategy set as

Ωên ,
{
ên ∈ RH : χ(min)

n (h) ≤ ên(h) ≤ χ(max)
n (h), ∀h

}
(2)

with χ(min)
n (h) and χ(max)

n (h) denoting the minimum and maximum
per-slot bid net energy consumption, respectively.

Then, let us define the per-slot bid energy load as

l̂n(h) , ên(h)− gn(h) + sn(h) (3)

and the strategy vector of a generic user n ∈ N as xn ,
(
xn(h)

)H
h=1

,

with xn(h) ,
(
ên(h), gn(h), sn(h)

)T. Given the bidding strategy
set Ωên defined as in (2), and the sets Ωgn and Ωsn introduced in
Section 2.2, the corresponding strategy set for a generic user n ∈ N
is given by

Ωxn ,
{
xn ∈ R3H : ên ∈ Ωên ,gn ∈ Ωgn , sn ∈ Ωsn

}
(4)

with gn = 0 if n /∈ G and sn = 0 if n /∈ S.

3.2. Energy Cost and Pricing Model

Let us now describe the cost model regulating the energy prices.
First, we introduce the cost per unit of energy Ch(·) indicating the
cost function at time-slot h set by the supply-side before the day-
ahead market. Within the day-ahead bidding process, demand-side
users agree the per-slot aggregate bid energy load L̂(h), and the
price per unit of energy Ch

(
L̂(h)

)
remains fixed during the time

period of analysis, while real-time penalties for load deviations are
subsequently applied. In this paper, we adopt the cost function

Ch
(
L̂(h)

)
= KhL̂(h) (5)

which corresponds to the non-normalized quadratic grid cost func-
tion widely used in the smart grid literature (e.g., in [4, 5, 10, 11]).
In general, the grid coefficients Kh > 0 vary along the time pe-
riod of analysis according to the aggregate energy demand and to
the availability of intermittent energy sources.

The per-slot aggregate bid energy load satisfies

L(min)(h) ≤ L̂(h) , L̂(P)(h) +
∑
n∈N

l̂n(h) ≤ L(max)(h) (6)

where L̂(P)(h) is the predicted per-slot aggregate energy consump-
tion associated with the passive users, and L(min)(h), L(max)(h) >
0 denote the minimum and maximum per-slot aggregate energy load,
respectively. In this regard, we suppose that the central unit can pre-
dict these amounts based on available past statistics (see [12] for an
overview on load forecasting techniques). Moreover, we suppose
that, once L̂(h) has been fixed in the day-ahead bidding process, the
real-time aggregate energy load is always guaranteed by the supply-
side.

Each active user n ∈ N derives his bid energy load vector
l̂n ,

(
l̂n(h)

)H
h=1

in the day-ahead demand-side bidding process.
Nonetheless, he can possibly deviate from such strategy in real time
by purchasing/selling a different amount of energy ln(h), for which
he pays/perceives KhL̂(h)ln(h), while incurring in the penalties
given by ϑh

(
ln(h) − l̂n(h)

)
, where the penalty function ϑh(x) is

defined as
ϑh(x) , αh(x)+ + βh(−x)+ (7)

with (x)+ = max(x, 0), and where αh, βh ∈ (0, 1] are the penalty
parameters for exceeding and for falling behind l̂n(h), respectively.

Given the bid energy load vector l̂n, the cumulative monetary
expense incurred by user n ∈ N for exchanging the energy loads{
ln(h)

}H
h=1

with the grid, taking into account the aforementioned

penalties for deviations and the energy produced
{
gn(h)

}H
h=1

, is
denoted by the cumulative expense over the time period of analysis

pn(̂ln, l̂−n) ,
H∑
h=1

(
Kh

(
l̂−n(h) + l̂n(h)

)(
ln(h)

+ ϑh
(
ln(h)− l̂n(h)

))
+Wn

(
gn(h)

))
(8)

where l̂−n ,
(
l̂−n(h)

)H
h=1

is the aggregate bid energy load vector
of the other demand-side users, with

l̂−n(h) , L̂(h)− l̂n(h) = L̂(P)(h) +
∑

m∈N\{n}

l̂m(h). (9)

On the other hand, here we are not interested in how the passive
users are billed (this issue is discussed in [4]).
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3.3. Expected Cost Minimization

Once the grid coefficients
{
Kh

}H
h=1

and the penalty parameters{
αh, βh

}H
h=1

are fixed in the day-ahead market [8, 9] and broad-
cast to the demand-side, active users react to the prices provided by
the central unit by iteratively adjusting their bid energy load vec-
tors l̂n (as in multi-round auctions [13]). Their final objective is to
jointly minimize the aggregate expected cumulative expense f(x) ,∑
n∈N fn(xn, l̂−n) =

∑
n∈N E{pn}, with x ,

(
xn
)N
n=1

and

fn(xn, l̂−n) ,
H∑
h=1

(
Kh

(
l̂−n(h) + δTxn(h)

)
× φen(h)

(
xn(h)

)
+Wn

(
δT
g xn(h)

))
(10)

denoting the individual expected cumulative expense of user n ∈ N
over the time period of analysis (see [4, Lem. 1]), where we have
defined δ , (1,−1, 1)T, δg , (0, 1, 0)T, and

φen(h)

(
xn(h)

)
, (1 + αh)ēn(h)− gn(h) + sn(h)− αhên(h)

+ (αh + βh)
(
ên(h)Fen(h)

(
ên(h)

)
−Gen(h)

(
ên(h)

))
(11)

with ēn(h) , E{en(h)} and Gen(h)(x) ,
∫ x
−∞ tfen(h)(t)dt.

4. COOPERATIVE DSM APPROACH FOR EXPECTED
COST MINIMIZATION

In our previous works [4, 10], we modeled the active users as play-
ers of a noncooperative game, acting thus selfishly to reduce their
individual monetary expenses. In this paper, instead, we follow an
holistic-based approach, which is more desirable from the perspec-
tive of both the active users and the supply-side since one jointly
optimizes the overall energy consumption of the active users, result-
ing thus in a more efficient demand-side management.

Stated in mathematical terms, we formulate our cooperative
DSM optimization problem as

min
x

f(x) =
∑
n∈N

fn(xn, l̂−n)

s.t. xn ∈ Ωxn , ∀n ∈ N
. (12)

Note that a centralized solution of (12) by the central unit is not
adequate because of users’ privacy and scalability issues. Therefore,
we focus in the following on distributed solution methods for (12).

We study the social problem (12) making the following blanket
assumptions, which are very reasonable and easily satisfied in prac-
tice [10, Rem. 1.1], [4, Rem. 1.1].
Assumption 1. (a) The strategy sets Ωgn and Ωsn are compact and
convex; (b) each production cost function Wn(·) is convex; and (c)
all χ(min)

n (h) and χ(max)
n (h) are chosen such that the pdf of the per-

slot net energy consumption satisfies

fen(h)(x) ≥ 1

L(min)(h)

(αh + 1)2

αh + βh
, ∀x ∈

[
χ(min)
n (h), χ(max)

n (h)
]
.

(13)
Condition (a) ensures that the individual strategy sets Ωxn are com-
pact and convex, whereas conditions (b)–(c) guarantee the convexity
of fn(xn, l̂−n) on Ωxn , for any feasible l̂−n (see [4, Th. 2]).

4.1. Distributed Dynamic Pricing Algorithm

Traditionally, nonconvex optimization problems in the form of (12)
have been tackled by using gradient descent algorithms, which solve
a sequence of convex problems obtained by convexifying the whole

social function; because of that, they generally suffer from slow con-
vergence. A faster algorithm can be obtained by following the ap-
proach recently proposed in [6, 7]: since each fn(xn, l̂−n) is con-
vex for any feasible l̂−n (under Assumption 1), we then convexify
only the nonconvex part, i.e.,

∑
m∈N\{n} fm(xm, l̂−m), and solve

the sequence of resulting parallel optimization subproblems, one for
each user. A formal description of the algorithm is given next.

We give first the following preliminary definitions. Let x(i) ,(
x

(i)
n

)N
n=1

be the joint strategy vector at iteration i; the resulting
aggregate load at time-slot h is

L̂(i)(h) , L̂(P)(h) +
∑
m∈N

l̂(i)m (h) (14)

where l̂(i)n (h) is the per-slot bid energy load of user n ∈ N at
iteration i, and l̂

(i)
−n ,

(
l̂
(i)
−n(h)

)H
h=1

with l̂
(i)
−n(h) , L̂(i)(h) −

l̂
(i)
n (h). We then introduce the best-response mapping Ωx 3 x(i) →
x̂τn(x(i)) ,

(
x̂τn,n(x(i))

)N
n=1

, where each x̂τn,n(x(i)) is given by

x̂τn,n(x(i)) , argmin
xn∈Ωxn

{
fn(xn, l̂

(i)
−n)

+ πT
n

({
Φh(x(i))

}H
h=1

)
(xn − x(i)

n ) +
τn
2
‖xn − x(i)

n ‖2
}

(15)

with

πn
({

Φh(x(i))
}H
h=1

)
,

∑
m∈N\{n}

∇xn fm(xm, l̂
(i)
−m)

=
(
δKh

(
Φh(x(i))− φen(h)

(
x(i)
n (h)

)))H
h=1

(16)

and Φh(x(i)) ,
∑
n∈N φen(h)

(
xn(h)

)
, where φen(h)

(
xn(h)

)
is

defined in (11). The proximal term τn‖xn − x
(i)
n ‖2/2 in (15) has

a motivation equivalent to that of [4, Alg. 2], since it makes (15)
strongly convex; x̂τn,n(x(i)) is thus well-defined.

The proposed algorithm solving (12) is a Jacobi scheme based
on the best-response (15), i.e., all the users solve in parallel the sub-
problems in (15). The formal description of the algorithm is given in
Algorithm 1, and its convergence conditions in Theorem 1 (whose
proof is omitted because of the space limitation, see [7]).

Algorithm 1 Distributed Dynamic Pricing Algorithm (DDPA)

Data :
{
Kh

}H
h=1

, {τn}n∈N > 0, {γ(i)} > 0,

Ωxn 3 x(0) =
(
x

(0)
n

)N
n=1

; set i = 0.
(S.1) : If a suitable termination criterion is satisfied: STOP.
(S.2) : The central unit calculates

{
Φh(x(i))

}H
h=1

. For n ∈ N ,

compute x
(i+1)
n = x

(i)
n + γ(i)

(
x̂τn,n(x(i))− x

(i)
n

)
(S.4) : i← i+ 1; Go to (S.1).

Theorem 1. Given the social problem (12), suppose that Assump-
tion 1 holds, {τn}n∈N > 0, and {γ(i)} are chosen such that

γ(i) ∈ (0, 1], γ(i) → 0,

∞∑
i=1

= +∞. (17)

Then, either Algorithm 1 converges in a finite number of iterations
to a stationary solution of (12) or every limit point of the sequence{
x(i)
}∞
i=1

is a stationary solution of (12).

Note that Algorithm 1 is guaranteed to converge whenever a so-
lution to the social problem (12) exists. Therefore, its convergence
conditions are consistently milder than those required by the non-
cooperative approach based on the proximal decomposition algo-
rithm (PDA) recently proposed in [4, Alg. 2]. However, differently
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Fig. 1. (a) Average per-slot expected expenses resulting from the PDA in [4, Alg. 2] and from the DDPA in Algorithm 1; (b) Expected per-slot aggregate
energy loads resulting from the PDA in [4, Alg. 2] and from the DDPA in Algorithm 1.

from the PDA, Algorithm 1 is not incentive compatible, in the sense
that active users need to reach an agreement in following the best-
response protocol (15). Moreover, it is characterized by the syn-
chronous update of the users’ strategies, whereas the PDA in [4,
Alg. 2] is totally asynchronous. Lastly, the signaling required by
Algorithm 1 is slightly more than that of [4, Alg. 2] since, at each
iteration i, the users need to provide

{
φen(h)

(
x

(i)
n (h)

)}H
h=1

to the
central unit, in addition to the bid energy load vectors l̂n. For these
reasons, the proposed method needs to be coordinated by an exter-
nal regulator in order to promote the cooperative bidding of demand-
side users. The incentive in using such an algorithm is that it yields
greater savings for all the costumers, as shown in our numerical re-
sults in the next section.

5. SIMULATION RESULTS

In this section, we illustrate numerically the performance of the pro-
posed cooperative day-ahead bidding process.

We consider a smart grid of N = 100 active users and 900 pas-
sive users, evaluating a time period of analysis ofH = 24 time-slots
of one hour each. With the same setup of [4], all demand-side users
n ∈ D have random energy consumption curves with daily average
of
∑24
h=1 ēn(h) = 12 kWh, with higher consumption during day-

time hours (from 08:00 to 24:00) than during night-time hours (from
00:00 to 08:00), and reaching its peak between 17:00 and 23:00.
The grid coefficients are chosen such that

{
Kh

}8

h=1
= Knight and{

Kh

}24

h=9
= Kday, with Kday = 1.5Knight as in [5, 10], so as to ob-

tain an initial price of 0.15 e/kWh when real-time penalties are ne-
glected. Furthermore, we set

{
αh
}8

h=1
= 0.2 and

{
αh
}24

h=9
= 0.9,

with βh = 1− αh, ∀h.
We model en(h) as a normal random variable with mean ēn(h)

and standard deviation σn(h) = 0.75|ēn(h)|, with χ(min)
n (h) and

χ
(max)
n (h) chosen to satisfy Assumption 1(c). Furthermore, we sup-

pose that active users with dispatchable generation and storage ca-
pabilities follow the production and storage models proposed in [10,
Sec. II], with the same parameters used in [10, Sec. IV].

Fig. 1(a) illustrates the average per-slot expected expense de-
rived from the PDA in [4, Alg. 2] and the DDPA in Algorithm 1
with {τn}n∈N = 0.1, γ(0) = 1, and the following step-size rule:

γ(i) = γ(i−1)(1− ε γ(i−1)), i = 1, . . . (18)

with ε = 10−3 (c.f. [7]). The resulting average expected cumu-
lative expense f(x)/N decreases from its initial value of e2.33 to
e0.82 with the PDA and to e0.62 with the DDPA. Hence, the pro-
posed cooperative approach allows a 24.6% save with respect to the
corresponding noncooperative method. On the other hand, Fig. 1(b)
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Fig. 2. Aggregate expected cumulative expenses at each iteration i, obtained
using the PDA in [4, Alg. 2] and DDPA in Algorithm 1.

depicts the expected per-slot aggregate energy loads obtained with
the noncooperative and with the cooperative approach: the resulting
expected demand curves are overall similar and show a substantial
flattening compared to the initial one, which considers the aggregate
average per-slot net energy consumptions

∑
n∈N ēn(h), due to the

employment of distributed energy generation and storage.
As termination criterion in (S.1) of Algorithm 1, we require

the modification in the bid energy load vector of each user between
two consecutive iterations to be sufficiently small (10−2). Algo-
rithm 1 converges after 32 iterations whereas, under an equivalent
setup, the PDA in [4, Alg. 2] converges after 11 iterations, although
the former has already reached a better result than the latter at i =
11. Moreover, it is worth remarking that [4, Alg. 2] is a double-loop
algorithm where each iteration implies several updates of the users’
strategies. Fig. 2 compares the evolution of the aggregate expected
cumulative expense resulting from both algorithms over the first 35
iterations. It is evident that, despite the more iterations needed, the
proposed DDPA allows to achieve a consistently lower value of f(x).

6. CONCLUSIONS

In this paper, we propose a cooperative day-ahead bidding process
for smart grid users based on a pricing model with real-time penal-
ties. We provide a distributed and iterative algorithm that allows to
compute the optimal bidding, production, and storage strategies of
the users with limited information exchange between the central unit
and the demand-side of the grid. Despite being slower in conver-
gence and requiring slightly more signaling, the proposed algorithm
converges under less stringent conditions and reduces considerably
the aggregate expected expense of the active users with respect to
the the corresponding noncooperative (selfish) approach.
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