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ABSTRACT

This manuscript addresses the maximum-a-posteriori-(MAP)-based
automatic modulation classification (AMC) for wireless orthogo-
nal frequency division multiplexing (OFDM) systems with adaptive
coding and modulation (ACM). The proposed classifier for quadra-
ture amplitude modulation (QAM) schemes which utilizes the chan-
nel reciprocity in time-division duplex (TDD) systems requires the
knowledge about the joint probabilities of the subcarrier-wise bit ef-
ficiencies at the transmitter and receiver side. In contrast to prior
heuristic approaches, these probabilities are calculated analytically
(with some approximations) if the transmitter and receiver apply the
same bit loading algorithm on their erroneously estimated channel
state information. Numerical results reveal that the precise knowl-
edge of the joint probabilities improves the reliability of the auto-
matic modulation classifier significantly, especially for high signal-
to-noise power ratios (SNR).

Index Terms— OFDM, automatic modulation classification,
adaptive coding and modulation, TDD, maximum-a-posteriori

1. INTRODUCTION

OFDM is one of the most prominent transmission technology in
current communication standards due to its advantages to combat
frequency-selectivity with low receiver complexity [1]. Further-
more, the multicarrier principle enables the adaptation of the coding
and modulation schemes per subcarrier- or subgroup leading to a
higher data rate and/or link reliability [2, 3, 4, 5]. Since the coding
parameters are typically adapted for a larger span of subcarriers, we
focus on the more critical subcarrier-wise bit loading here.

In contrast to wired communication scenarios like digital sub-
scriber line (DSL) in which ACM is already established, the time-
variant radio channels necessiates a regular update of the so-called
bit allocation table (BAT) in wireless systems. Signalling the BAT
to the receiver, however, causes a large amount of overhead [6].
An alternative solution is to automatically classify the modulation
schemes on each subcarrier solely based upon the signal form of the
received signal and channel reciprocity utilizable in TDD mode.

Relation to prior work. A lot of research on AMC has been car-
ried out during the last decades, mainly for military applications [7,
8]. A comprehensive overview of maximum-likelihood- and feature-
based algorithms is given in [9]. Most of the work is not related
to the specific characteristics of adaptive wireless OFDM systems.
In [10], a similar problem has been investigated where the receiver
jointly classifies the BAT and decodes the information in a Trellis-
based way. Apart from the high complexity and low flexibility of
the decoder, the high error probability is caused by the insufficient
utilization of the frame structure, namely the fact that the BAT is
constant for the whole frame.
This work was supported by the German Research Foundation under grant HA5655/4-1.

Main contributions. In [11] and [12], the authors of this pa-
per have developed an AMC algorithm which is efficient already for
short frames. One open issue was to determine the joint probabilities
of the subcarrier bandwidth efficiencies at transmitter and receiver
side which is needed to fully exploit the channel reciprocity. In [12],
a heuristic approach to approximate these parameters was proposed.
In this contribution, we extend the calculations, which was firstly
referred to but not finished in [10], adopt them to our scenario and
determine the joint probabilities analytically. Using the newly found
expressions, we can justify the heuristic low-complexity approach
in [12] and, moreover, show that the precise knowledge of the joint
probabilities increases the classification reliability even more.

Organization of the paper. The paper is organized as follows:
Section 2 introduces the signal model and motivates the idea of this
paper. In Section 3, the MAP-based modulation classifier which uti-
lizes channel reciprocity in TDD mode is described. The major con-
tribution of this work is given in Section 4 in which the joint proba-
bilities of transmit and receive bandwidth efficiencies are calculated
analytically. Section 5 validates the derivation by numerical inves-
tigations of the classification reliability of the proposed algorithm.
Finally, conclusions are drawn in Section 6.

Notation. fx(·) denotes the probability density function (pdf)
of x; ⌊·⌉ is the rounding operation.

2. SIGNAL MODEL AND PROBLEM FORMULATION

In a perfectly synchronized OFDM system, the received symbol dn,k

on the n-th subcarrier at the k-th OFDM block can be written as:

dn,k = Hn,k · sn,k + vn,k , (1)

where Hn,k, sn,k and vn,k denote the channel transfer function
value, the transmit QAM symbol and additive white Gaussian noise
on the n-th subcarrier of the k-th block (1 ≤ n ≤ N , 1 ≤ k ≤ K).

The considered signal flow at the initiation of ACM is depicted
in Fig. 1. In the uplink, the base station (BS) carries out a channel
estimation (CE) based on the preamble sent by the mobile station
(MS). By using the estimate ĤTx,n, it applies an ACM algorithm and
finds the best coding scheme (common for all subcarriers) and the
transmit BAT bTx which includes the bandwidth efficiencies bTx,1

to bTx,N . In the downlink, the BS transmits a frame consisting of a
preamble and payload data according to the optimal coding scheme
and the BAT bTx. Based on the channel estimate ĤRx,n, the MS
applies the same ACM algorithm as the BS to find the receive BAT
bRx (using the same coding scheme as the BS). In order to be able
to decode the payload data, the receiver must be synchronized to the
transmit parameters. Whereas the coding scheme and the data rate
is signalled conventionally – the overhead caused by these single
parameter is negligible – we classify the BAT automatically using
the following MAP approach.
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ĤRx,n

BS calculates

MS calculates

ACM

ACM
bRx

bTx

Preamble Data (non-adaptive)

time

b̃Rx

Fig. 1. Considered signal flow in TDD mode at the initiation of adaptive coding and modulation

3. MAP-BASED AUTOMATIC MODULATION
CLASSIFICATION

A well-known bit loading algorithm which maximizes the link qual-
ity for a given data rate is to adapt the subcarrier bandwidth efficien-
cies to the channel capacity [2] (here formulated for receiver):

bRx,n =
⌊

b̃Rx,n

⌉

, s. t.
1

N
·

N∑

n=1

bRx,n = b (2)

with
b̃Rx,n = log2

(

1 + kRx · |ĤRx,n|
2
)

, (3)

where the factor kRx is chosen according to the average bandwidth
efficiency b. We assume that the transmitter has applied this loading
algorithm analogously for the same data rate.

The proposed AMC algorithm utilizes the symbols dn =
[dn,1, . . . , dn,K ] and the non-quantized bandwidth efficiencies
b̃Rx = [b̃Rx,1, . . . , b̃Rx,N ] at the receiver side. The aim of the
MAP approach is to search for that hypothesis combination which
maximizes the a-posteriori probability p(bTx|(d, b̃Rx)):

b̂Tx = argmax
bTx

p(bTx|(d, b̃Rx)) , (4)

where d = [d1, . . . ,dN ] combines all received symbols. This joint
search is not feasible in practical systems. Instead, the subcarrier-
independent approach is investigated [12]:

b̂Tx,n = argmax
bTx,n

p(bTx,n|(dn, b̃Rx,n)) (5)

= argmax
bTx,n

p(bTx,n,dn, b̃Rx,n)

p(dn, b̃Rx,n)
(6)

= argmax
bTx,n

p(b̃Rx,n,dn, bTx,n
︸ ︷︷ ︸

cost function J

) . (7)

Thus, the joint probabilitity must be maximized which is:

J = p(b̃Rx,n|(dn, bTx,n)) · p(dn, bTx,n) (8)

= p(b̃Rx,n|(dn, bTx,n)) · p(dn|bTx,n) · p(bTx,n) . (9)

Expanding with p(b̃Rx,n, bTx,n) and rearranging yields the cost
function:

J =
p(b̃Rx,n|(bTx,n,dn))

p(b̃Rx,n|bTx,n)
· p(dn|bTx,n) · p(b̃Rx,n, bTx,n) . (10)

Numerical analysis have shown a good coincidence of the condi-
tional probabilities p(b̃Rx,n|(bTx,n,dn)) and p(b̃Rx,n|bTx,n). Thus,
the considered MAP classifier can be formulated as:

b̂Tx,n = argmax
bTx,n

p(dn|bTx,n) · p(b̃Rx,n, bTx,n) . (11)

The first term in the cost function is the well-known likelihood-
function and is derived e. g. in [11]. However, the second term in
(11) which describes the amount of reciprocity between transmit and
receive BAT could only be heuristically approximated up to now.

4. DERIVATION OF JOINT PROBABILITIES

Problem statement. Suppose that the transmitter and receiver have
calculated the subcarrier bandwidth efficiencies according to (3):

b̃Tx,n = log2

(

1 + kTx · |ĤTx,n|
2
)

(12)

b̃Rx,n = log2

(

1 + kRx · |ĤRx,n|
2
)

. (13)

Now, the joint probabilities p(b̃Rx,n, bTx,n) are derived under the as-
sumption that the difference between b̃Tx,n and b̃Rx,n is only caused
by CE errors εTx,n and εRx,n in the time-invariant channel transfer
function Hn:

ĤTx,n = Hn + εTx,n (14)

ĤRx,n = Hn + εRx,n . (15)

Here, we assume channel reciprocity which holds for well-calibrated
front-ends in TDD mode. Moreover, we noticed that variations due
to the time-variance can be neglected compared to CE errors in typ-
ical indoor propagation scenarios with short frames. In case of a
zero-forcing (ZF) channel estimator, the error variances σ2

εTx
=

E{|εTx,n|
2} and σ2

εRx
= E{|εRx,n|

2} are inversely proportional to
the SNR γ = E{|sn,k|

2}/E{|vn,k|
2}. For a ZF channel estima-

tor with NTS training blocks and windowing the cyclic prefix with
length NCP in the time-domain, it holds [13]:

σ2
εTx

= σ2
εRx

=
1

NTS · N
NCP

· γ
. (16)

4.1. Probability density function fb̃Tx,n
(b̃Tx,n)

In the first step, we calculate the probability density function of
b̃Tx,n in terms of the pdf of |ĤTx,n|

2 for a given kTx:

fb̃Tx,n
(b̃Tx,n) =

f|ĤTx,n|2(|ĤTx,n|
2)

∣
∣
∣

∂b̃Tx,n

∂|ĤTx,n|2

∣
∣
∣

. (17)

With the first derivative and the inverse function of (12), respectively,

∂b̃Tx,n

∂|ĤTx,n|2
=

kTx

ln(2)
·

1

1 + kTx · |ĤTx,n|2
(18)

|ĤTx,n|
2 =

1

kTx
·
(

2b̃Tx,n − 1
)

, (19)
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the pdf of b̃Tx,n can be written as:

fb̃Tx,n
(b̃Tx,n) = f|ĤTx,n|2

(

2b̃Tx,n − 1

kTx

)

·
ln(2) · 2b̃Tx,n

kTx
. (20)

For Rayleigh fading, the pdf of |Hn|
2 and, due to independent Gaus-

sian estimation error εTx,n also |ĤTx,n|
2, exhibits an exponential

function for h ≥ 0:

f|ĤTx,n|2(h) =
1

σ2
ĤTx

· exp

(

−
h

σ2
ĤTx

)

(21)

with the variance

σ2
ĤTx,n

= E
{
|Hn + εTx,n|

2} = 1 + σ2
εTx

, (22)

where E{|Hn|
2} = 1. Inserting in (20) yields for b̃Tx,n ≥ 0:

fb̃Tx,n
(b̃Tx,n) =

ln(2) · 2b̃Tx,n

(1 + σ2
εTx

) · kTx
· exp

(

−
2b̃Tx,n − 1

(1 + σ2
εTx

) · kTx

)

.

(23)

4.2. Conditional pdf fb̃Rx,n|b̃Tx,n
(b̃Rx,n)

The second step is to calculate the conditional pdf of b̃Rx,n under the
condition b̃Tx,n. The variables ĤRx,n and ĤTx,n in (14) and (15)
are multivariate Gaussian distributed according to:

(
ĤRx,n

ĤTx,n

)

∼ CN

((
µ1

µ2

)

,

(
C11 C12

C21 C22

))

. (24)

with µ1 = µ2 = 0, C12 = C21 = 1, C11 = 1 + σ2
εRx

and C22 =

1 + σ2
εTx

. Then, the conditional random variable ĤRx,n|ĤTx,n is
still Gaussian distributed:

ĤRx,n|ĤTx,n ∼ CN
(

µ1 + C12C
−1
22 (ĤTx,n − µ2),

C11 − C12C
−1
22 C21

)

(25)

∼ CN

(

ĤTx,n

1 + σ2
εTx

, (1 + σ2
εRx

)−
1

1 + σ2
εTx

)

. (26)

Let ARx,n = |ĤRx,n| and σ2
ε = (1+σ2

εRx
)− 1/(1+σ2

εTx
). Then,

the conditional pdf of ARx,n|ĤTx,n is Rician distributed:

fARx,n|ĤTx,n
(ARx,n) =

2ARx,n

σ2
ε

· exp













−

A2
Rx,n+

∣

∣

∣

∣

∣

∣

ĤTx,n

1+σ2
εTx

∣

∣

∣

∣

∣

∣

2

σ2
ε













· I0













2ARx,n

∣

∣

∣

∣

∣

∣

ĤTx,n

1+σ2
εTx

∣

∣

∣

∣

∣

∣

σ2
ε













, (27)

where I0(·) denotes the modified Bessel function of first kind with
0th order: I0(x) = 1

π
·
∫ π

0
ex·cos(t) dt. With the inverse function of

(13) and the first derivative

ARx,n =

√
1

kRx
·
(

2b̃Rx,n − 1
)

(28)

∂b̃Rx,n

ARx,n
=

2

ln(2)
·

√

kRx ·
(

2b̃Rx,n − 1
)

2b̃Rx,n
, (29)

the conditional pdf fb̃Rx,n|ĤTx,n
(b) is given by:

fb̃Rx,n|ĤTx,n
(b) =

ln(2) · 2b

σ2
ε · kRx

· exp













−

1
kRx

·(2b−1)+
∣

∣

∣

∣

∣

∣

ĤTx,n

1+σ2
εTx

∣

∣

∣

∣

∣

∣

2

σ2
ε













· I0













2

√

1
kRx

·(2b−1)

∣

∣

∣

∣

∣

∣

ĤTx,n

1+σ2
εTx

∣

∣

∣

∣

∣

∣

σ2
ε













. (30)

By replacing |ĤTx,n| with
√

(2
b̃Tx,n−1)/kTx according to (12)

and setting ATx,n = |ĤTx,n/(1 + σ2
εTx

)|, the conditional pdf
fb̃Rx,n|b̃Tx,n

(b̃Rx,n) is formulated as:

fb̃Rx,n|b̃Tx,n
(b̃Rx,n) =

ln(2) · 2b̃Rx,n

σ2
ε · kRx

· exp
(

−
A2

Rx,n+A2
Tx,n

σ2
ε

)

· I0

(
2ARx,n ·ATx,n

σ2
ε

)

. (31)

4.3. Joint probabilities p(b̃Rx,n, bTx,n)

The joint pdf of b̃Tx,n and b̃Rx,n is then:

fb̃Rx,n,b̃Tx,n
(b̃Rx,n, b̃Tx,n) = fb̃Rx,n|b̃Tx,n

(b̃Rx,n) · fb̃Tx,n
(b̃Tx,n) .

(32)
In order to take the rounding operation in (2) into account, we finally
integrate the joint pdf in the corresponding interval (e. g. bTx,n −

0.5 ≤ b̃Tx,n ≤ bTx,n + 0.5) to determine the joint probabilities:

p(b̃Rx,n, bTx,n) =

∫

fb̃Rx,n,b̃Tx,n
(b̃Rx,n, b̃Tx,n) db̃Tx,n . (33)

4.4. Approximation of kTx and kRx

Note that the calculated probabilities depend on the factors kTx and
kRx, respectively. In order to simplify the following calculations,
we set kTx = kRx = k. Since it is extremely difficult to find the
pdf of k based on the side condition in (2), we restrict ourselves in
our analysis to the value of k in the average sense. Despite this sim-
plification, numerical investigations indicate a good agreement of
simulation and analytical results. Still, the evaluation of k is difficult
in the general case. Therefore, we distinguish different cases:

High capacity approximation. For large bandwidth efficien-
cies, the approximation log2(1 + x) ≈ log2(x) can be used. Then,
the expectation of the side condition in (2) w.r.t. different channel
realizations and neglecting the rounding operation is:

b ≈
1

N

N∑

n=1

E{log2(k · |ĤRx,n|
2)} (34)

=
1

N

N∑

n=1

∫ ∞

0

log2(k · h) ·
1

1 + σ2
εRx

e
− h

1+σ2
εRx dh . (35)

Splitting log2(k ·h) = log2(k)+ log2(h) and some straightforward
calculations, we find

b ≈ log2(k) + log2(1 + σ2
εRx

)−
1

ln(2)
· C , (36)

where C = −
∫∞

0
ln(x)exp(−x) dx is the Euler constant. Thus, k

can be approximated by

k ≈ 2
b−log2(1+σ2

εRx
)+ 1

ln(2)
·C

. (37)
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Small capacity approximation. For small bandwidth efficien-
cies, log2(1 + x) ≈ α · xβ with e. g. α = 1 and β = 1/2 is
valid [14]. Following the same steps as in the previous paragraph,
we have:

b ≈
1

N

N∑

n=1

E
{

α ·
(

k · |ĤRx,n|
2
)β
}

(38)

=
1

N

N∑

n=1

∫ ∞

0

α · (k · h)β ·
1

1 + σ2
εRx

· e
− h

1+σ2
εRx dh . (39)

After some manipulations, k can be approximated by:

k ≈
1

1 + σ2
ε

·

(
1

α ·
∫∞

0
hβ · e−h dh

)1/β

· b
1/β

. (40)

Based on the chosen α and β, the integral can be calculated offline.
E.g., for α = 1 and β = 1/2, it holds:

k
α=1,β=1/2

≈
1.27

1 + σ2
ε

· b
2
. (41)

5. NUMERICAL RESULTS

The OFDM relevant simulation parameters are concordant to the
IEEE 802.11a/n standard: sampling period of T = 50 ns, N = 64

 

 

MAP, simulated

Maximum-likelihood
Reciprocity-based

C
la

ss
ifi

ca
tio

n
er

ro
r

pr
ob

ab
ili

ty
P

c
e

SNR [dB]

8 10 12 14 16 18 20 22 24 26
10−3

10−2

10−1

100

MAP, analytical with (41)

MAP, heuristic [12]
MAP, quantized [11]

Fig. 4. Classification error probability Pce = P (b̂Tx 6= bTx) versus
transmit SNR for different AMC algorithms

and a cyclic prefix length of NCP = 16. The multipath channel is
based on indoor propagation model B in [15] with a Doppler fre-
quency of fdop = 20Hz. It is estimated using a ZF algorithm and
uses two preamble OFDM blocks: NTS = 2. The number of pay-
load OFDM blocks is K = 20. The code rate is chosen according to
the principle in [5]; bit loading like in [2] with bandwidth efficiencies
between 0 and 10 bit/sym follows in a second step.

In order to show the validity of the analytical results, Fig. 2 and
Fig. 3 depict two examples of the joint pdf of b̃Rx,n and b̃Tx,n and
the probabilities p(b̃Rx,n, bTx,n) for different fixed receive band-
width efficiencies b̃Rx,n, average bandwidth efficiencies b and SNR
values. It can be seen that the analytical and simulation results agree
very well. The heuristic approach in [12] which assumes a Gaussian
error distribution with fixed variance is reasonable but clearly subop-
timal. Note that for smaller SNR, the shape of the joint pdf deviates
significantly from a Gaussian characteristic (not shown here). Fig. 4
depicts the classification error probability Pce = P (b̂Tx 6= bTx)
versus the transmit SNR for different AMC algorithms and an aver-
age bandwidth efficiency of b = 4 bit/sym. Clearly, if either only the
received symbols dn (Maximum-likelihood) or bRx (Reciprocity-
based) is exploited in the classification, the classification reliabil-
ity is poor. Using the quantized bit efficiencies bRx instead of b̃Rx

(MAP, quantized) [11] also leads to a large performance degradation.
Moreover, it can be seen that the performance of the novel AMC al-
gorithm using the analytical results of p(b̃Rx,n, bTx,n) (MAP, analyt-
ical) is similar to using the simulated joint probabilities (MAP, simu-
lated). Coincidentally, it performes even slightly better which comes
from the suboptimality of subcarrier-independent approach and the
simplification in (11). Both algorithms outperform the heuristic ap-
proach (MAP, heuristic), especially at higher SNRs.

6. CONCLUSIONS

This paper focuses on the MAP-based automatic modulation classi-
fication for adaptive OFDM systems. In order to fully exploit chan-
nel reciprocity in the considered TDD system, the joint probabilities
of the transmit and receive subcarrier bandwidth efficiencies must
be precisely known. The analytical calculation in this contribution
gives more insight in the amount of reciprocity and is a substantial
enhancement compared to a prior heuristic approximation. Numer-
ical results in terms of the classification reliability show a signifi-
cant improvement when using the analytical expressions, at cost of a
higher complexity. In view of its low complexity and high classifica-
tion reliability, the heuristic approach appears to be a good trade-off
for practical applications.
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