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ABSTRACT

A distributed extended Kalman filter (EKF) algorithm is de-
veloped for tracking moving targets in a wireless sensor net-
work equipped with distance estimating sensors. In particular,
a distance-dependent measurement error of range-estimating
sensors is modeled as a multiplicative noise in the observa-
tion model. A new formulation of EKF, called generalized
EKF (GEKF) based on the multiplicative noise model is de-
veloped. Compared to conventional EKF formulation, it is
shown that GEKF can achieve smaller estimation error than
traditional EKF. Simulation results also demonstrated superi-
or performance of GEKF.

Index Terms— Wireless sensor networks, extended
Kalman filtering, target tracking, distance-dependent

1. INTRODUCTION

A wireless sensor network (WSN) is an enabling technology
of cyber physical systems. It has found numerous applica-
tions such as infrastructure monitoring, habitat sensing, and
battlefield surveillance [1]. A critical task that is required by
many WSN applications is the ability to track moving targets
within the sensing field based on distributed sensor measure-
ments [2, 3].

Traditionally, target tracking is performed using the
Kalman Filter (KF) algorithm or its variants such as the
Extended Kalman filter (EKF), or Unscented Kalman filter
(UKF). These algorithms assume the target movement can be
described by a dynamic system model where the state (loca-
tion, speed, etc.) can be observed via a measurement model.
The traditional Kalman filter provides optimal estimates of
target states if both the dynamic system model and the mea-
surement model are linear and the system driving noise and
observation noise are additive independent, identically dis-
tributed normal random variables.

In a WSN, however, sensor measurements have multiple
modalities and the measurement model is often non-linear
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or even signal dependent. For instance, in a bearings-only
tracking application [4], the measurement noise is a func-
tion of the signal to noise ratio(SNR) and the incident angle
of the signal. In a target tracking application using dis-
tance measurements[5], the measurement noise covariance
matrix increases as the relative distance to the target in-
creases. To deal with state-dependent measurement noise, a
recursive extended Kalman filter using maximum likelihood
(ML) estimation with Newton-Raphson nonlinear optimiza-
tion is proposed[6]. In [7], a separate ML localization step is
first performed to estimate the target location based only on
present observations. Then the estimated target locations are
treated as an observation to facilitate KF-based tracking.

In this work, the task of tracking a moving target in a WS-
N using observations of sensor to target distance is consid-
ered. In particular, it is assumed that the distance estimate is
contaminated by distance-dependent multiplicative observa-
tion noise. Using this nonlinear, signal dependent noise mod-
el, a generalized EKF (GEKF) algorithm is derived. Com-
pared to conventional EKF solution, it is proved that the esti-
mation error of GEKF is smaller than that of the conventional
EKF. This finding is further justified with extensive simula-
tion comparing the performance of GEKF against those of
traditional EKF as well as the method presented in [7].

The rest of this paper is organized as follows. In Sec-
tion 2, the nonlinear observation model with multiplicative
noise is formulated. The proposed GEKF Tracking algorithm
with state-dependent distance measurement noise is derived
in Section 3. Performance evaluations comparing the simu-
lation performance of GEKF against those of existing algo-
rithms are reported in Section 4. Conclusions and discussions
are presented in section 5.

2. PROBLEM FORMULATION

Assume that N identical sensor nodes with known position-
s are deployed over a 2-D sensing field and form a WSN.
The position of the nth (1 ≤ n ≤ N ) sensor node is denot-
ed by rn. Each sensor node is equipped with an ultrasonic
range sensor with a known detection range (sensing range)
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d. When the sensor to target distance hn(k) is less than d,
the target will be detected and the distance hn(k) will be
reported by the sensor. The subset of sensor nodes within
the sensing range of the target at time k will be denoted by
Lk = {n|hn(k) ≤ d, 1 ≤ n ≤ N}. Therefore, if n /∈ Lk, the
nth sensor will not reported a reading in time k.

When the target moves through the monitored area, the
sensors which have detected the target will organized to for-
m a cluster [8, 9, 3]. A sensor in the cluster will be select-
ed as the cluster head which also serves as the fusion center
of signal and information processing. Cluster members mea-
sure their respective sensor-to-target distances and transmit
the distance to the cluster head via wireless channels. For
convenience, transmission delay or packet loss are ignored.

The trajectory of a moving target within the WSN at a
position ρk = [x(k) y(k)]T and a speed ρ̇(k) = [ẋ(k) ẏ(k)]T

can be described by a discrete time dynamic state transition
equation[10]:

Xk = Fk−1Xk−1 +Gk−1Wk−1, (1)

where Xk = [x(k) ẋ(k) y(k) ẏ(k)]T is the state vector. Fk−1

and Gk−1 are the state transition matrix and input matrix re-
spectively. The input noise Wk−1 is a 2× 1 Gaussian random
vector with zero mean and a covariance matrix Qk−1.

The sensor measurement zn(k) of the nth sensor at time
k consists of the sensor to target distance

hn(k) = ∥rn − ρn(k)∥ (2)

and a distance dependent observation noise [7]:

zn(k) = [1 + un(k)]hn(k) + vn(k) n ∈ Lk (3)

un(k) and vn(k) are independent Gaussian noises such that
E{un(k)} = µu, E{vn(k)} = µv , n ∈ Lk, and for i, j ∈ Lk

E{(ui(k)− µu)(vj(k)− µv)} = 0,

E{(ui(k)− µu)(uj(k)− µu)} = σ2
uδi,j ,

E{(vi(k)− µv)(vj(k)− µv)} = σ2
vδi,j , (4)

where δi,j = 1 if i = j, and = 0 otherwise.
The use of un(k) as a multiplicative noise is motivated by

the fact that the measurement error on a distance measuring
sensor increases roughly linearly as a function of the sensor
to target distance [11].

Denote ℓk to be the cardinal number of Lk, the sensor
measurements at the kth time step may be represented in a
matrix form:

Zk = Ak ·Hk(Xk) + Vk (5)

where Ak = diag{1 + un(k); 1 ≤ n ≤ ℓk}, Hk(Xk) =
[h1(k) · · ·hℓk(k)]

T , and Vk = [v1(k) · · · vℓk(k)]T . More-
over, E{Vk} = µv1 = µv[1 1 · · · 1]T1×ℓk

, and Rk = σ2
vI.

The objective of this work is to develop a generalized ex-
tended Kalman filter (GEKF) tracking algorithm for the given

observation model to be executed at the cluster head. More
specifically, given the previous target state Xk−1 and noisy
sensor observations Zk, our goal is to obtain a sequential
Bayesian estimate of Xk using a Kalman filter formulation.

3. TRACKING ALGORITHM WITH
DISTANCE-DEPENDENT OBSERVATION NOISE

Using Bayes rule, one has

p(Xk|Z1:k) ∝ p(Zk|Xk)p(Xk|Z1:k−1). (6)

where Z1:k = {Z1, Z2, · · · , Zk} and p(Xk−1|Z1:k−1) =
N(X̂k−1|k−1, Pk−1|k−1) [12] . Thus

p(Xk|Z1:k−1) = N(X̂k|k−1, Pk|k−1) (7)

where X̂k|k−1 = Fk−1X̂k−1|k−1, and Pk|k−1 =
Fk−1Pk−1|k−1F

T
k−1 +Gk−1Qk−1G

T
k−1.

To update the state estimate using latest observation Zk,
consider a first order Taylor series expansion of Hk(Xk)
around X̂k|k−1:

Hk(Xk) ≈ Hk(X̂k|k−1) + Ḣk(Xk − X̂k|k−1) (8)

where Ḣk =

[
∂Hk(Xk)

∂XT
k

∣∣∣
Xk=X̂ k|k−1

]
is a ℓk×4 matrix. Thus,

Z̃(k) ≈ Ak[Hk + Ḣk(Xk − X̂k|k−1)] + Vk. (9)

In eq. (9), Hk and Ḣk may be estimated from the expected
value of X̂k|k−1 and treated as known quantities. Then Z̃(k)
becomes a linear combination of two normal random vari-
ables X̂k|k−1 and Vk. Therefore, the joint probability distri-
bution

p(Xk, Zk|Z1:k−1) = p(Zk|Xk)p(Xk|Z1:k−1)

≈ N
([

X̂k|k−1

ΣE(k)

]
,

[
Pk|k−1 CE(k)
CT

E(k) SE(k)

])
(10)

where

ΣE(k) = E{Z̃k} = (1 + µu)Hk(X̂k|k−1) + µv1, (11)

CE(k) = Cov{XK , Z̃k} = (1 + µu)Pk|k−1Ḣ
T
k . (12)

Denote Bk = diag{u1 − µu, · · · , uℓk − µu}ℓk×ℓk , one has

SE(k) = Cov{Z̃k, Z̃k} = E{AkḢkPk|k−1Ḣ
T
k A

T
k }

+ E{BkHk(X̂k|k−1)H
T
k (Xk|k−1)B

T
k }+ σ2

vI.

Using eq. (4), SE(k) may be simplified as:

SE(k) = (1 + µu)
2ḢkPk|k−1Ḣ

T
k + σ2

uMk + σ2
vI, (13)

where Mk = diag{ḢkPk|k−1Ḣ
T
k + HkH

T
k } is a diagonal

matrix consisting of the diagonal elements of the matrix in-
side the brackets.
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From eq. (10), the posterior distribution of Xk is

p(Xk|Zk, Z1:k−1) = N(X̂k|k, Pk|k). (14)

This leads to the GEKF update equations:

X̂k|k = X̂k|k−1 +KE(k)[Zk − ΣE(k)],

Pk|k = Pk|k−1 −KE(k)C
T
E(k),

KE(k) = CE(k)SE(k)
−1. (15)

3.1. Traditional EKF Formulation

Note that the observation model in eq. (3) can also be ex-
pressed as the sum of a nonlinear observation and an additive,
signal-dependent noise:

zn(k) = [1 + un(k)]hn(k) + vn(k) n ∈ Lk

= hn(k) + v′n(k) (16)

where v′n(k) = un(k)hn(k)+vn(k). The corresponding Tay-
lor series expansion leads to a first order linear approximation
of the nonlinear measurement model as follows:

Z ′(k) ≈ Hk + Ḣk(Xk − X̂k|k−1) + V ′
k, (17)

and V ′
k = (Ak − I) · [Hk + Ḣk(Xk − X̂k|k−1)] + Vk is an

equivalent (data dependent) additive noise term such that

ΣV ′(k) = E{V ′
k} = µuHk(X̂k|k−1) + µu1,

R′
k = Cov{V ′

k, V
′
k} = µ2

uḢkPk|k−1Ḣ
T
k + σ2

uMk + σ2
vI.

Mk is defined in eq. (13). Now, the joint distribution of Xk

and Zk may be approximated as

p(Xk, Zk|Z1:k−1) ≈ N(

[
X̂k|k−1

ΣE(k)

]
,

[
Pk|k−1 C ′

E(k)

C
′T
E (k) S′

E(k)

]
) (18)

where C ′
E(k) = Cov{XK , Z ′

k} = Pk|k−1Ḣ
T
k , and

S′
E(k) = Cov{Z ′

k, Z
′
k} = ḢkPk|k−1Ḣ

T
k +R′

k. This leads to
the state update equations in a traditional EKF formulation:

X̂ ′
k|k = X̂k|k−1 +K ′

E(k)
−1[Zk − ΣE(k)],

K ′
E(k) = C ′

E(k)S
′
E(k)

−1.
(19)

3.2. Performance Comparison

The trace (sum of diagonal elements) of the covariance ma-
trix tr{Pk|k } corresponds to the mean squared error (MSE)
of the updated state and can be used to measure the tracking
performance[8, 3]. In general, smaller tr{Pk|k } value implies
more accurate tracking.

Now, from above derivations, one has the following lem-
ma:

Lemma 1.

P ′
k|k = Pk|k + [K ′

E(k)− CE(k)S
−1
E ]SE [K

′
E(k)− CE(k)S

−1
E ]T. (20)

Proof. From eq. (19) and eq. (10), the covariance of the state
updated by the measurements Zk in the traditional EKF is

P ′
k|k = E{[Xk − X̂ ′

k|k][Xk − X̂ ′
k|k]

T}
= Pk|k−1 − CE(k)K

′
E(k)

T −K ′
E(k)C

T
E(k) +K ′

E(k)SE(k)K
′
E(k)

T,

= Pk|k−1 − CE(k)S
−1
E CT

E(k)
+[K ′

E(k)− CE(k)S
−1
E ]SE [K

′
E(k)− CE(k)S

−1
E ]T

= Pk|k + [K ′
E(k)− CE(k)S

−1
E ]SE [K

′
E(k)− CE(k)S

−1
E ]T.

Lemma 1 relates to state covariance matrices of the GEKF
and traditional EKF. Using this lemma, the following theorem
can be easily verified:

Theorem 2.
tr{Pk|k } < tr{P ′

k|k }. (21)

Proof. Since [K ′
E(k)−CE(k)S

−1
E ]SE [K

′
E(k)−CE(k)S

−1
E ]T

is a positive-definite matrix, its matrix diagonal entries are
real and positive[13]. Therefore, tr{Pk|k − P ′

k|k } < 0. Or
equivalently, eq. (21) is verified.

Theorem 2 states that the GEKF yields more accurate esti-
mate than that of the traditional EKF under the multiplicative
measurement model eq. (3).

4. SIMULATION AND DISCUSSION

To validate the expected performance advantage of the pro-
posed GEKF tracking algorithm, Monte Carlo simulations are
conducted. In these simulations, the performance of GEKF is
compared against three competing Kalman filter formulation-
s: the traditional EKF, UKF algorithms, and the two-phase
KF+ML algorithm proposed in [7].

In these experiments, four sensors are deployed at four
corners of a square sensing field of size 2 meters by 2 meters.
Each sensor has a detection radius d ≥ 2

√
2 meters. A single

target travels within the sensing field at a constant angular
velocity of 0.122 rad/s along a spiral trajectory with radius
0.35 meters. The sampling interval is 0.2 second (5 Hz). For
this motion, the process noise Wk−1 can be approximated by
a variable acceleration with Qk−1 = diag{0.0027, 0.0027}.

The parameter values for Kalman filters are set to

X̂ 0|0 = [ 1.0 0.0428 1.0 0.0 ]T, P 0|0 = 0.001× diag{ 1 1 1 1 }

Two different noise conditions are simulated in these ex-
periments: (a) Low Noise condition with µu = 0.0174, σ2

u =
2.916 × 10−4, µv = −0.0386, σ2

v = 7.97 × 10−5. (b) High
Noise condition with µu = 0.54, σ2

u = 0.056, µv = 0.11,
σ2
v = 0.017.

100 sets realizations of sensor observation noise are gen-
erated for each of the two noise conditions. Each of the four
Kalman filter algorithms then are applied to track the moving
target. Average of the results of 100 trials are reported.
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Fig. 1. Tracking results under low noise environment.
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Fig. 2. Tracking results under high noise environment.

Figure 1,2 show the tracking trajectories and tracking per-
formances of different tracking algorithms under the low and
high noise conditions. In the low noise condition, all four
tracking algorithms attain similar tracking performance. This
is quite reasonable as the impact of the multiplicative distance
dependent noise term has negligible magnitude under the low
noise condition.

However, under the high noise condition, as shown in
figure 2, the inadequate noise model of the EKF, UKF and
KF+ML significantly degraded their tracking performance
compared to that of the GEKF algorithm.

5. CONCLUSION

In this paper, a practical distance-dependent, multiplicative
observation noise model is proposed to enhance the observa-
tion model for distance-measuring sensors. Based on this new
noise model, a generalized extended Kalman filter (GEKF) al-
gorithm is proposed. Extensive simulation comparing GEKF
agains traditional EKF, UKF and a previously proposed K-
F+ML method yield very favorable results for GEKF.
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