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ABSTRACT

Target tracking in wireless sensor networks is traditionally achieved
by localization and tracking (LAT), where the sensors are first lo-
calized, and in a later stage the target is tracked. This approach is
sub-optimal since the sensor-target observations are not used to re-
fine the position estimates of the sensors. In contrast, simultaneous
localization and tracking (SLAT) uses these observations to track the
target while simultaneously localizing the sensors. In this paper, we
propose a novel centralized SLAT method based on real-time non-
parametric belief propagation, which has nearly the same complex-
ity and the same communication cost as LAT, and can provide both
sensors’ and target’s estimated distributions in non-Gaussian form.

Index Terms— Simultaneous localization and tracking, non-
parametric belief propagation, wireless sensor networks

1. INTRODUCTION

Tracking a (passive) target in wireless sensor networks (WSN) re-
quires position knowledge of each sensor, which can be achieved
either by manually placing the sensors on predefined positions or
equipping them with GPS receivers [1–4]. However, these ap-
proaches are typically impractical or too costly, so one alternative is
to apply a WSN localization algorithm to locate all sensors. Then,
these estimated locations, along with sensor-target observations, are
used to track the target. This approach, referred to as localization
and tracking (LAT) [5], is sub-optimal since the sensor-target ob-
servations (e.g., distance measurements) are not used to refine the
sensor positions online. In contrast to this approach, simultane-
ous localization and tracking (SLAT), introduced in [6], uses these
observations to track the target while simultaneously localizing the
sensors, but typically with significantly higher complexity than LAT.
In this paper, we propose a novel centralized SLAT method based on
real-time nonparametric belief propagation (NBP) which has nearly
the same complexity and the same communication cost as LAT. This
method, referred to as NBP-SLAT, can provide both sensors’ and
target’s estimated distributions in non-Gaussian form.

2. RELATION TO PRIOR WORK

In the recent state-of-the-art, there are few important methods for
SLAT [6–9]. In [6], the authors propose a Bayesian filtering ap-
proach to update a joint probability density functions (PDF) over the
sensor positions, the target track, and the calibration parameters of
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the network. To avoid huge computational complexity of this ap-
proach, Laplace’s method has been used to approximate all PDFs
with Gaussians. Since this approach estimates directly the joint PDF
over all sensors, its complexity grows exponentially with the num-
ber of sensors. In [7], the authors propose distributed variational
Bayesian filtering to find posterior marginal PDFs over the sensor
positions and the target track. A variational approach, based on
mean-field method, is used to factorize the joint PDF, which is then
approximated with a Gaussian distribution. An extended Kalman fil-
ter (EKF) is used in [8] to track the target while recursive maximum
likelihood (ML) and expectation maximization (EM) determine the
point estimates of the sensors’ positions. A fully scalable distributed
implementation is provided via message passing based on consen-
sus propagation. Finally, in [9], authors propose a sequential Monte
Carlo (SMC) approach to approximate the PDF of the target track,
while they use EM and gradient descent to estimate the static param-
eters and the positions of the sensors, respectively. Therefore, the
estimated PDFs of the tracks (not necessarily Gaussian) are avail-
able, but only the point estimates of the sensor positions.

None of the these methods are capable to provide all the char-
acteristics of NBP-SLAT. Most importantly, we note that none of
them can provide sensors’ posterior PDFs in non-Gaussian form.
Since [6] and [7] approximate posterior PDFs with a Gaussian distri-
bution, and [8] and [9] with a point estimate (Dirac delta impulse), it
will lead to a suboptimal approximation in case of non-linear mod-
els and/or non-Gaussian measurements. This is especially a serious
problem in non-rigid graphs, in which the posterior PDFs of a subset
of the sensors is multi-modal [10].

3. PROBLEM FORMULATION

We considerNs sensors with fixed 2D position zn, n = 1, 2, . . . , Ns,
scattered randomly in a planar region, and one target, with 2D po-
sition xt, at time t (t = 1, 2, . . . , NT ), moving through this region.
A subset of the sensors (called anchors) can have perfect a priori
position information. Prior to the target’s arrival, the sensors are
assumed to have executed a Bayesian (cooperative) localization al-
gorithm [11, 12], leading to distributions of the positions of every
sensor, represented by particles. The target is passive (e.g., a vehicle
or person), in the sense that it cannot perform computations, but it
can periodically emit a signal (e.g., acoustic) which can be detected
by a subset of sensors, with a sampling interval Ts. We assume that
sensors sense the target if and only if it is within a distance r. Two
sensors can communicate if and only if they are within distance R
from one another. Assuming that the radio of a node is much more
powerful than its sensing devices [13],R > r. Following [10], more
complex models can be easily incorporated. Finally, we assume
there is a fusion center (e.g., an external device or one of the sen-
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sors), which collects the priors of the sensors’ and target’s positions,
and the periodic measurements. The goal of the fusion center is to
determine posterior marginal PDFs (referred to as the beliefs) of the
target at each time instant t, and of each sensor position.

4. PROPOSED METHOD: SLAT VIA REAL-TIME NBP

4.1. Graphical model

We first cast the estimation problem as a probabilistic graphical
model. Since we only have pairwise (distance) measurements, we
choose a Markov random field (MRF) model [14]. In a MRF, each
vertex represents a random variable with an associated single-node
potential (a local evidence), and each edge represents a pairwise
potential (a likelihood function). An example of a MRF, with 3
sensors (n, p, and q) and a target at three time instants (t − 1, t,
and t + 1), is shown in Fig. 1. We introduce duplicate variables for
the positions of the sensors at the different time instants, denoted by
zn,t. Single and pairwise potentials1 are given by:

ψt(xt) =

{
p0(x0), if t = 0
1, otherwise

(1)

ψn,t(zn,t) =

{
pn,0(zn,0), if t = 0
1, otherwise

(2)

ψt,(n,t)(xt, zn,t) = pv(dt,(n,t) − ‖xt − zn,t‖), (3)

ψt−1,t(xt−1,xt) = pw(νt−1 − ‖xt − xt−1‖ /Ts), (4)

ψ(n,t−1),(n,t)(zn,t−1, zn,t) = δ(zn,t − zn,t−1), (5)

in which p0(x0) is the a priori distribution of the target’s posi-
tion, pn,0(zn,0) is the outcome of the initial localization algorithm,
dt,(n,t) is the measured distance between the target at time t and the
sensor n at time t (distributed according to pv(·)), νt is the measured
speed of the target at time t (distributed according to pw(·)), and δ(·)
is Dirac delta impulse, which enforces that the sensors are static.

The goal is to update the beliefs of the sensors’ and target’s
positions in real-time. A tractable way to achieve it is by using a
particle-based message passing method, such as NBP [10], but with
the restrictions which ensure the real-time execution.

4.2. Real-time belief propagation (BP)

We focus on a single time slot t (t > 0), where at the begin-
ning, the fusion center has available (i) the beliefs of the sensors’
positions, based on all information up to time t − 1, denoted by
Mn,t−1(zn,t−1); (ii) the belief of the target position, based on all
information up to time t − 1, denoted by Mt−1(xt−1), as well as
the single and pairwise potentials defined in previous section. Using
standard BP (see [10, eqs. (8)-(9)]), we compute sensor-to-target
and target-to-target messages:

m(n,t)→t(xt) =
∫
ψt,(n,t)(xt, zn,t)

Mn,t(zn,t)

mt→(n,t)(zn,t)
dzn,t =

=
∫
ψt,(n,t)(xt, zn,t)Mn,t−1(zn,t)dzn,t

(6)
mt−1→t(xt) =

∫
ψt−1,t(xt−1,xt)

Mt−1(xt−1)

mt→t−1(xt−1)
dxt−1 =

=
∫
ψt−1,t(xt−1,xt)Mt−1(xt−1)dxt−1

(7)

1Note that the potentials and the messages are not necessarily normalized.
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Fig. 1: Example of graphical model for online SLAT.

where we made the restriction to ensure real-time execution:
mt→t−1(xt−1) = 1. The target belief is given as the product of
all received messages:

Mt(xt) ∝ mt−1→t(xt)
∏
n∈Gs

t

m(n,t)→t(xt) (8)

where Gst is the set of sensors that can detect the target at time t.
Then, we compute the target-to-sensor and the sensor-to-sensor

messages, respectively:

mt→(n,t)(zn,t) =

∫
ψt,(n,t)(xt, zn,t)

Mt(xt)

m(n,t)→t(xt)
dxt (9)

m(n,t−1)→(n,t)(zn,t) =

=
∫
ψ(n,t−1),(n,t)(zn,t−1, zn,t)

Mn,t−1(zn,t−1)

m(n,t)→(n,t−1)(zn,t−1)
dzn,t−1 =

=Mn,t−1(zn,t)
(10)

where we used (5) and made the following restriction to ensure real-
time execution: m(n,t)→(n,t−1)(zn,t−1) = 1. Finally, we update
the belief of the sensors:

Mn,t(zn,t) ∝
{
Mn,t−1(zn,t)mt→(n,t)(zn,t), if n ∈ Gst
Mn,t−1(zn,t), otherwise

(11)
Remarks: Note that we have not included (online) inter-sensor

measurements, which can provide additional information, but also
significantly increase the complexity and latency. However, these
links would be necessary if the sensors are mobile (in that case,
the corresponding algorithm is cooperative SLAT (CoSLAT), pro-
posed in [15]). Moreover, despite the presence of loops of the MRF,
real-time BP does not schedule messages through those loops, so
that the real-time beliefs are exact.2 Finally, we note that traditional

2An offline approach, which includes information from the future, would
provide over-confident beliefs. In that case, reweighted variants of BP (e.g.,
[11, 12]) should be used.
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LAT can be considered as a specific instance of SLAT, by restricting
the target-to-sensors messages (i.e., instead of computing (9), we set
mt→(n,t)(zn,t) = 1).

4.3. Real-time nonparametric belief propagation (NBP)

Due to the nonlinearity and possible non-Gaussian measurement
noise, parametric BP (where the beliefs and messages are computed
using distributions belonging to parametric families) is undesirable.
Therefore, we apply nonparametric approximation in which all the
beliefs are represented with a weighted set of particles.

We assume we have available a set of Np weighted particles
from the previous time instant: {W (j)

n,t−1,Z
(j)
n,t−1}, {W

(j)
t−1,X

(j)
t−1}

(j = 1, 2...Np) which represent the approximation of the beliefs
Mn,t−1(zn,t−1) and Mt−1(xt−1), respectively. Our goal is to ob-
tain the approximation of these beliefs at time t.

We first approximate the message (6), by shifting the particle
Z

(j)
n,t−1 in a random direction by an amount that represents the esti-

mated distance between the sensor n and the target at time t. Thus,
the particles and weights are given by:

X
(j)

(n,t)→t = Z
(j)
n,t−1 + (dt,(n,t) − v(j)n,t) [cos θ

(j)
n,t sin θ

(j)
n,t]

T (12)

W
(j)

(n,t)→t =W
(j)
n,t−1 (13)

where v(j)n,t ∼ pv(·) and θ(j)n,t ∼ Uniform[0, 2π). We can also de-
termine a continuous approximation of (6), via Monte Carlo (MC)
integration. Using (5) and (6), we find:

mMC
(n,t)→t(xt) =

∑
j

ψt,(n,t)(xt,Z
(j)
n,t−1)W

(j)
n,t−1 (14)

In case of the message from an anchor, we do not draw the parti-
cles, since the parametric form of the message is simply given by
mMC

(a,t)→t(xt) = m(a,t)→t(xt) = ψt,(a,t)(xt,Za,t) where Za,t is
the known position of the anchor a at time t. Similarly, we can ap-
proximate (7) in particle and continuous form:

X
(j)
t−1→t = X

(j)
t−1 + (νt−1 − w(j)

t−1)Ts [cos θ
(j)
t−1,t sin θ

(j)
t−1,t]

T

(15)
W

(j)
t−1→t =W

(j)
t−1 (16)

mMC
t−1→t(xt) =

∑
j

ψt−1,t(xt,X
(j)
t−1)W

(j)
t−1 (17)

where w(j)
t−1 ∼ pw(·) and θ(j)t−1,t ∼ Uniform[0, 2π).

Now, we will approximate (8), which would require us to draw
particles from the product of the messages. Since this is in gen-
eral intractable, we use a proposal distribution, the sum of Gaussian
mixtures with reference particles (RPs), and then reweight the par-
ticles. This approach, called mixture importance sampling with RPs
(MIS-RP) [16], is extension of standard MIS [10]. We first create a
collection of (

∣∣Gs,−at

∣∣ + 1 + δRP)Np weighted particles by taking
all particles from each incoming message excluding anchors (i.e.,
X

(j)
t−1→t and X

(j)

(n,t)→t, ∀n ∈ G
s,−a
t , j = 1, 2...Np; where Gs,−at

is the set of non-anchors which can detect the target at time t) and
adding a small number of uniformly distributed particles (RPs) over
whole deployment area. Here, δRP is the percentage of reference
particles. These RPs are especially useful in case of outliers [17].
Then, we draw Np particles (X(j)

t ) from this collection, and com-

pute their weights as importance ratio:

W
(j)
t =

mMC
t−1→t(X

(j)
t )

∏
n∈Gs

t

mMC
(n,t)→t(X

(j)
t )

mMC
t−1→t(X

(j)
t ) +

∑
n∈Gs,−a

t

mMC
(n,t)→t(X

(j)
t ) + δRP

(18)

We finally normalize the weights W (j)
t = W

(j)
t /

∑
j′W

(j′)
t and

have an approximation of (8). We will now approximate (9) as

mMC
t→(n,t)(zn) =

∑
j

ψt,(n,t)(X
(j)
t , zn,t)

W
(j)
t

mMC
(n,t)→t(X

(j)
t )

(19)

which is computed only if n is not an anchor (otherwise, it is not
necessary to send this message). We finally update the weighted
particles of the sensor beliefs (11) as:

Z
(j)
n,t = Z

(j)
n,t−1 (20)

W
(j)
n,t =

{
W

(j)
n,t−1m

MC
t→(n,t)(Z

(j)
n,t), if t ∈ Gτn

W
(j)
n,t−1, otherwise

(21)

These weights are then normalized to sum up to one. Note that in
principle, it is again possible to use MIS-RP, but since there is max-
imum one incoming message this is not necessary.

Finally, we can compute the estimated positions of the sensors
and the target as minimum-mean-square-error (MMSE) estimate,
i.e., xestt =

∑
jW

(j)
t X

(j)
t , and zestn,t =

∑
jW

(j)
n,tZ

(j)
n,t. A wide

variety of other estimates can be also found (e.g., mode, variance,
probability that target/sensor is within some critical area). Regard-
ing complexity, taking that the computation of (18) is dominant, both
SLAT and LAT need O(|Gst |N2

p ) operations per time slot.
Remarks: There is a potential problem with the previous pro-

cedure. Some of the calculated weights can be much larger then
the rest, which means that the particle-based estimate will be domi-
nated by the influence of a few (or just one) particles. This problem,
known as sample depletion [18], can significantly increase the esti-
mated error. To avoid this problem, we use resampling with replace-
ment [10, 18] for the particle-based approximation of the sensor’s
and the target’s beliefs (after (18) and (21), respectively), in which
we draw Np particles with uniform weights from the weighted set
of particles. Although the resampling step reduces the sample de-
pletion, it introduces another problem, sample impoverishment, in
which most of the particles (now with the same weights) collapse to
a single point. This problem, which is severe in case of small mea-
surement noise, we solve by adding additional noise to the particles
(called, jitter) [18, 19].

5. NUMERICAL EXAMPLE

We consider a network with 3 sensors in a 100 m by 100 m area,
and one target moving with constant speed 30 m/s. The initial posi-
tion of the target (t = 1) and two sensors are perfectly known. We
set the sensing radius to r = 45 m, the communication radius to
R = 50 m, the number of particles to Np = 1000, and percentage
of RPs to δRP = 0.1. The sampling interval is set to Ts = 1 s, and
there are only 3 discrete intervals. We assume that the measured dis-
tance is distributed according to Gaussian distribution with the mean
corresponding to true value and standard deviation σd = 2 m. Fi-
nally, to ensure the fair comparison, we provide the same seed for all
random variables (in this case, the measurements and the particles).

5182



(a) (b) (c)

(d) (e) (f)

Fig. 2: The estimated beliefs of the position of: (a) sensor 2 (NBP-LAT), (b) target at t = 2 (NBP-LAT), (c) target at t = 3 (NBP-LAT), (d) sensor 2
(NBP-SLAT), (e) target at t = 2 (NBP-SLAT), and (f) target at t = 3 (NBP-SLAT).
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Fig. 3: A 3-node network and a target at 3 time instants. The known positions
of the sensors/target are marked by squares, and unknown with circles. The
dashed edges are only used to obtain the prior of sensor 2, and all others for
online SLAT.

This scenario, which corresponds to the graphical model in Fig. 1, is
illustrated in Fig. 3.

Our goal is to compare the estimates of NBP-SLAT with NBP-
LAT. The beliefs3 of sensor 2, and the target at times t = 2, 3 are
shown in Fig. 2. As we can see, sensor 2 has only two sensors as

3Given weighted particles, the beliefs are visualized using kernel density
estimation with optimal bandwidth selection [20].

neighbours, so its belief (found a priori) is bimodal (Fig. 2a). This
belief, along with the known positions of other two sensors, is used
to track the target at times t = 2, 3. As a result, the belief of tar-
get at time t = 2 (Fig. 2b) is more informative than belief at time
t = 3 (Fig. 2c), since it has three neighbors with perfectly known
position. In contract to this approach, in NBP-SLAT, sensor 2 also
uses the information from the target to improve its position, so its
final belief is unimodal. This improved belief is used to track the
target (again, along with known positions of other two sensors), so
the target estimates are also improved (especially, at time t = 3).

In total, root-mean-square error is reduced from 13.73 m to 2.86
m while the execution time increased only 9%. Similar results are
obtained for other examples not included in this paper. Moreover,
as mentioned earlier, the communication cost of both NBP-SLAT
and NBP-LAT is exactly the same. Therefore, NBP-SLAT should be
always used instead of NBP-LAT.

6. CONCLUSIONS

We presented a novel SLAT method based on real-time NBP, with
the following characteristics: i) it has nearly the same complexity
as LAT, ii) its communication cost is exactly the same as LAT, and
iii) can provide both sensors and target’s beliefs in non-Gaussian
form. According to our results, NBP-SLAT is significantly more
accurate than NBP-LAT, especially if the sensors’ beliefs are multi-
modal. Our future work will focus on the performance analysis of
the NBP-SLAT in large-scale WSNs, comparison with other state-
of-the-art methods, and distributed implementation.
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