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ABSTRACT

In this paper we investigate the posterior Cramer-Rao lower bound
for tracking a mobile station in a non-line-of-sight multipath lo-
calization scenario. The posterior Cramer-Rao lower bound is the
mean-square estimation error lower bound of a random scalar or
vector parameter in linear/nonlinear filtering problems. A practical
system model is chosen to represent the non-line-of-sight multipath
propagations. A recursive formulation of the posterior Cramer-Rao
lower bound is developed for tracking a mobile station in a non-line-
of-sight multipath localization scenarios when the observations are
the time-of-arrival, the angle-of-departure, the angle-of-arrival and
the Doppler shift. The lower bound is also shown for a subset of
these observations. The developed lower bound can be used to an-
alyze the achievable performance of a tracking system designed for
use in a non-line-of-sight multipath localization scenarios.

Index Terms— NLOS multipath Localization, CRLB, Posterior
CRLB, NLOS multipath propagations

1. INTRODUCTION

Localization has a number of potential applications like augmented
reality, context-aware services, guided tour of museums etc. How-
ever, localization in non-line-of-sight (NLOS) multipath environ-
ments is rather a difficult problem. Conventional satellite and cel-
lular network positioning systems, which are often based on a cer-
tain line-of-sight (LOS) assumption, fail to meet the performance
requirements. This is due to the fact that the NLOS multipath prop-
agations often result in unreliable pseudo-range observations. Here,
we consider the single bounce scattering model introduced in [1] to
model the NLOS multipath propagations. The single bounce scat-
tering model helps to exploit the NLOS multipath propagations and
thus improves the localization accuracy [2, 3].

Given an unknown deterministic scalar or vector parameter, the
Cramer-Rao lower bound (CRLB) sets the lower bound of the vari-
ance of an unbiased estimator given sequences of observations. The
lower bound of the mean-square estimation error of a random scalar
or vector parameter is referred to as the Van Trees bound [4] or the
posterior CRLB (PCRLB) [5]. In [5], a recursive method for de-
termining the PCRLB of a linear/nonlinear filtering problem is pro-
posed. In this paper, we use the proposed method to determine the
PCRLB of an estimator which tracks a mobile station (MS) moving
randomly in an NLOS multipath environments.

The CRLB for localizing an MS in an NLOS multipath propa-
gation environments where the observation consists of the range, the
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bearing and the Doppler shift (DS) has been presented in [6]. How-
ever, the CRLB presented in [6] is essentially similar to the CRLB
presented in [1]. The improvement from the CRLB presented in [1]
is the assumption of a linear deterministic mobility model for a short
period of time which helps to exploit the correlation between succes-
sive observations. The linear deterministic mobility model simplifies
the localization process as only the initial position and the initial ve-
locity estimates of the MS are required for subsequent position esti-
mation of the MS. In addition, the CRLB calculation in [6] involves
the inversion of a very large matrix whose dimension grows with the
number of observations which makes it computationally intensive.
The PCRLB for tracking an MS in mixed LOS/NLOS conditions
has been presented in [7] and [8] for time-of-arrival (TOA) observa-
tions and received signal strength (RSS)/TOA observations, respec-
tively. In both [7] and [8], the scatterers are not explicitly considered.
Hence it is assumed in [7] that the LOS and NLOS transition history
is known. Whereas in [8] the NLOS bias is modeled as positive
uniform randomly distributed variable. In this paper we present the
PCRLB for tracking an MS in an NLOS multipath propagation en-
vironments, under the explicit consideration of the scatterers, which
allows for a random movement of the MS. The PCRLB is computed
recursively for each step of the MS path and hence it does not suffer
from the dimensionality problem. The observations considered are
the range, the bearing and the DS.

The present paper is organized as follows. In section 2, the
PCRLB is discussed. The system, mobility and observation models
of the localization scenario are discussed in section 3. The PCRLB
of tracking an MS in an NLOS multipath environments is presented
in section 4 followed by simulation results and discussions in section
5. Finally, a conclusion of this paper is drawn in section 6.

Notation: Im and 0m×m are identity and zero matrices of size
m × m, respectively. 1m and 0m are column vectors of ones and
zeros of size m, respectively. A superscript “T” denotes a trans-
pose. diag (a) denotes a diagonal matrix with the diagonal elements
defined by vector a.

2. POSTERIOR CRLB

Given an unknown random r-dimensional parameter θ = (θ1, · · · ,
θr) and an observation vector z, the PCRLB is the lower bound of
the mean-square estimation error of an estimator θ̂ which estimates
the parameter θ. Let p(θ, z) denote the joint probability density of
(θ, z), the PCRLB of the estimation error is

E{[θ̂ − θ][θ̂ − θ]T} � J
−1, (1)

where J is the Fisher information matrix with the elements

Jij = E

[

−
∂2 ln p(θ, z)

∂θi∂θj

]

i, j = 1, . . . , r. (2)
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In the following we denote the first- and second-order partial deriva-
tives with ∇ and ∆:

∇θ =

[

∂

∂θ1
, · · · ,

∂

∂θr

]T

(3)

∆ϕ
θ = ∇θ∇

T
ϕ. (4)

Using the operator ∆θ
θ , equation (2) can be written as

J = E
[

−∆θ
θ ln p(θ, z)

]

. (5)

Let’s consider the vector parameter θn and the observation vec-
tor zn at time instant n. In [5], a recursive computation of the
PCRLB for each θn is proposed. A frequent singular case in which
the conditional probability density function (pdf) p (θn+1|θn) is not
defined is also considered. A singular conditional pdf p (θn+1|θn)
arises if there are variables in the vector parameter which remain
constant or which are not directly driven by the system driving noise.
In the latter case the variables change as a result of being a func-
tion of the variables being driven by the system driving noise. The
PCRLB for tracking an MS in an NLOS multipath environments has
a singular conditional pdf p (θn+1|θn) and hence we consider this
special case of the PCRLB. To this end, the part of the vector pa-
rameter θn which makes the conditional pdf p(θn+1|θn) singular
is separated from the part of the vector parameter which is nonsin-
gular. Let the nonsingular part be θ(1)

n and the singular part be θ(2)
n .

Hence the vector parameter θn is rewritten as

θn = ((θ(1)n )T, (θ(2)
n )T)T. (6)

The main idea of finding the recursive PCRLB is to compute first
the PCRLB for the nonsingular part of the vector parameter θ(1)n
and then update the PCRLB by considering the singular part of the
vector parameter θ(2)n by using the rule for change of coordinates
of parameters. The relationship between the nonsingular part of the
vector parameter θ(1)n and the singular part of the vector parameter
θ
(2)
n has to be defined to apply the rule for change of coordinates of

parameters.
Considering a linear state transition function and a nonlinear ob-

servation function which are independent of n, we will get the fol-
lowing system model:

θ
(1)
n+1 = θ

(1)
n + un, (7)

θ
(2)
n+1 = G

(2)
θ
(2)
n +G

(3)
θ
(1)
n+1, (8)

zn = h(θn) + vn, (9)

where un and vn are independent and identically distributed system
and observation noises, respectively.

Let Kn be the information matrix for the vector ((θ
(1)
n−1)

T,

(θ
(1)
n )T, (θ

(2)
n )T). The decomposition of the matrix Kn into blocks

corresponding to the vectors θ(1)n−1, θ(1)n and θ(2)
n reads

Kn =







K
(11)
n K

(12)
n K

(13)
n

K
(21)
n K

(22)
n K

(23)
n

K
(31)
n K

(32)
n K

(33)
n






. (10)

Let Jn be the information matrix for the vector ((θ(1)n )T, (θ
(2)
n )T).

The decomposition of the matrix Jn into blocks corresponding to
the vectors θ(1)n and θ(2)

n reads

Jn =

(

J
(11)
n J

(12)
n

J
(21)
n J

(22)
n

)

. (11)

The matrix Kn is computed from the matrix Jn−1 as follows:

Kn = M
−T

Nn−1M
−1, (12)

where

M =





I 0 0

0 0 I

0 G(2) G(3)



 , (13)

and

Nn−1 =







J
(11)
n−1 +H

(11)
n−1 J

(12)
n−1 +H

(12)
n−1 H

(13)
n−1

(J
(12)
n−1 +H

(12)
n−1)

T J
(22)
n−1 +H

(22)
n−1 H

(23)
n−1

(H
(13)
n−1)

T (H
(23)
n−1)

T H
(33)
n−1






.

(14)
The matrix Hn is defined as follows:

H
(11)
n = E

{

−∆θ
(1)
n

θ
(1)
n

ln pn

}

, (15)

H
(12)
n = E

{

−∆θ
(2)
n

θ
(1)
n

ln pn

}

, (16)

H
(13)
n = E

{

−∆
θ
(1)
n+1

θ
(1)
n

ln pn

}

, (17)

H
(22)
n = E

{

−∆θ
(2)
n

θ
(2)
n

ln pn

}

, (18)

H
(23)
n = E

{

−∆
θ
(1)
n+1

θ
(2)
n

ln pn

}

, (19)

H
(33)
n = E

{

−∆
θ
(1)
n+1

θ
(1)
n+1

ln pn

}

, (20)

where

pn = p
(

θ
(1)
n+1|θ

(1)
n

)

· p
(

zn+1|θ
(2)
n ,θ

(1)
n+1

)

. (21)

Using the matrix inversion Lemma, the matrix Jn can be computed
recursively by using the matrix Kn as follows:

Jn =

(

K
(22)
n K

(23)
n

K
(32)
n K

(33)
n

)

−

(

K
(21)
n

K
(31)
n

)

(K(11)
n )−1

(

K
(21)
n

K
(31)
n

)T

.

(22)

3. SYSTEM MODEL

3.1. NLOS multipath propagation model

The NLOS multipath propagations impair the accuracy of conven-
tional localization techniques which work under the assumption of
LOS propagation. In the following we model the NLOS multipath
propagations by considering single bounce reflections only. Signals
from multiple bounce reflections are not considered as they are as-
sumed to have small power due to the severe attenuation caused by
the multiple scattering. In practice, the two step proximity detec-
tion algorithm presented in [9] can be applied to detect and discard
multiple bounce scattering.

We consider a single BS of known position whereas the position
of the stationary scatterers and the trajectory of the MS are unknown.
Since large scale mobility is not expected from the MS, the localiza-
tion scenario is assumed to remain unchanged with respect to the
visibility of the scatterers. Fig. 1 shows the system model of a sin-
gle bounce scattering scenario. The communication between the BS
and the MS is established via the NLOS propagation path through
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the scatterers. The scatterers are denoted by Sl, l ∈ {1, 2, . . . , L}.
The transmitted signal propagates from the BS at position (xB, yB)
to the l-th scatterer at position (xS,l, yS,l) and then to the MS at po-
sition (xM,n, yM,n) which travels with a velocity (vx,n, vy,n) at dis-
crete time instant n, , n ∈ {1, 2, . . . , N}. The total propagation path
length is denoted by dn,l and it consists of the path length from the
BS to the l-th scatterer denoted by dB,l and the path length from the
l-th scatterer to the MS denoted by dM,n,l. The angle-of-departure
(AOD), the angle-of-arrival (AOA) and the DS are denoted by ψl,
φn,l and fn,l, respectively.

x

y

(vx,n, vy,n)

ψl

φn,l

MS

Sl

BS

dM,n,ldB,l

Fig. 1. System model for one NLOS propagation path

The range dn,l, the AOD ψl, the AOA φn,l and the DS fn,l are
calculated as

dn,l= dB,l + dM,n,l (23)

dB,l=
√

(xS,l − xB)2 + (yS,l − yB)2 (24)

dM,n,l=
√

(xS,l − xM,n)2 + (yS,l − yM,n)2 (25)

ψl=
π

2
(1− sgn(xS,l − xB)) + tan−1 yS,l − yB

xS,l − xB
(26)

φn,l=
π

2
(1− sgn(xS,l − xM,n)) + tan−1 yS,l − yM,n

xS,l − xM,n
(27)

fn,l=
fc
c

vx,n(xS,l − xM,n) + vy,n(yS,l − yM,n)

dM,n,l
, (28)

where fc and c are the carrier frequency of the signal and the speed of
light, respectively. The state vector is θn = (vx,n, vy,n, xM,n, yM,n,
xT
S ,y

T
S )

T where xS = (xS,1, . . . , xS,L)
T and yS = (yS,1, . . . ,

yS,L)
T. The range dn,l, the bearing ψl and φn,l and the DS fn,l can

be estimated using the SAGE algorithm [10] and the localization
can be performed either at the BS or at the MS.

3.2. Observation model

The observations corresponding to the l-th scatterer are assumed to
be noisy versions of the range dn,l, the bearing ψl and φn,l and the
DS fn,l. Let the vectors

dn=(dn,1, dn,2, . . . , dn,L)
T, (29)

ψ=(ψ1, ψ2, . . . , ψL)
T, (30)

φn=(φn,1, φn,2, . . . , φn,L)
T, (31)

fn=(fn,1, fn,2, . . . , fn,L)
T, (32)

denote the range, the bearing and the DS of all the scatterers at time
instant n. The relation between the 4L-dimensional observation vec-
tor zn and the state vector θn is defined by equation (9) where h(θn)
is defined as

h(θn) = (dT
n (θn),ψ

T(θn),φ
T
n (θn), f

T
n (θn))

T (33)

and
vn ∼ N (04L,Rn). (34)

Rn is the 4L× 4L covariance matrix defined as

Rn = diag(σ2
dn,1

, . . . , σ2
dn,L

, σ2
ψ1
, . . . , σ2

ψL
,

σ2
φn,1

, . . . , σ2
φn,L

, σ2
fn,1

, . . . , σ2
fn,L

), (35)

i.e., the observation noises are assumed to have independent distri-
bution. Thus the conditional pdf p (zn|θn) can be calculated as

p (zn|θn) =
exp

(

− 1
2
(zn − h(θn))

TR−1
n (zn − h(θn))

)

(2π)
4L
2 det

1
2 (Rn)

. (36)

3.3. Mobility model

The mobility of the MS is described by the nearly constant velocity
model in which the MS is assumed to move with a constant velocity
during the sampling interval δt. The random movement of the MS
is modeled by the random changes in the velocity in every sampling
time interval which is modeled by a Gaussian noise. Thus the state
vector is partitioned as

θ
(1)
n = (vx,n, vy,n)

T, (37)

θ
(2)
n = (xM,n, yM,n,x

T
S ,y

T
S )

T. (38)

The mobility model is defined by equation (7) and (8) with

un ∼ N (02,Qn), (39)

Qn = diag
(

σ2
ux,n

, σ2
uy,n

)

, (40)

G
(2) = I2(L+1), (41)

G
(3) = (diag (δt, δt) ,02×2L)

T . (42)

Thus the matrix M in equation (13) can be constructed using the

actual values of G(2) and G(3). The conditional pdf p
(

θ
(1)
n+1|θ

(1)
n

)

can be calculated as

p
(

θ
(1)
n+1|θ

(1)
n

)

=
exp

(

− 1
2
(θ

(1)
n+1 − θ

(1)
n )TQ−1

n (θ
(1)
n+1 − θ

(1)
n )
)

(2π)
2
2 det

1
2 (Qn)

.

(43)
The initial state vector θ0 is independent of un and has the Gaussian
distribution θ0 ∼ N (cs,Qs).

4. PCRLB FOR NLOS MULTIPATH ENVIRONMENTS

To evaluate the PCRLB, we need to find the partial derivatives of

ln pn which is a sum of ln p
(

θ
(1)
n+1|θ

(1)
n

)

and ln p
(

zn+1|θ
(2)
n ,θ

(1)
n+1

)

.

Using equations (43) and (36) we find

− ln p
(

θ
(1)
n+1|θ

(1)
n

)

= c1 +
1

2
(θ

(1)
n+1 − θ

(1)
n )TQ−1

n (θ
(1)
n+1 − θ

(1)
n ),

(44)
and

− ln p
(

zn+1|θ
(2)
n ,θ

(1)
n+1

)

= c2 +
1

2
(zn+1 − h(θ(2)

n ,θ
(1)
n+1))

T

R
−1
n (zn+1 − h(θ(2)

n ,θ
(1)
n+1)). (45)

c1 and c2 are constants. Thus equations (15) – (20) can be calculated
using equation (44) and (45) as

H
(11)
n = Q

−1
n , (46)
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H
(12)
n = 02×2(L+1), (47)

H
(13)
n = −Q

−1
n , (48)

H
(22)
n = VnR

−1
n V

T
n , (49)

H
(23)
n = VnR

−1
n W

T
n , (50)

H
(33)
n = Q

−1
n +WnR

−1
n W

T
n , (51)

where
Vn = ∇

θ
(2)
n

h
T(θ(2)n ,θ

(1)
n+1), (52)

Wn = ∇
θ
(1)
n+1

h
T(θ(2)

n ,θ
(1)
n+1). (53)

The derivations of the Jacobian matrices Vn and Wn are not shown
here for brevity.

The initial recursion value J0 is defined by the Jacobian of the

a-priori pdf p
(

θ
(1)
0 ,θ

(2)
0 , z1

)

= p
(

θ
(1)
0 ,θ

(2)
0

)

. Since a Gaussian

distributed initial state vector is assumed

J0 = Q
−1
s . (54)

The PCRLB of the MS position γM,n at time instant n can thus be
determined as

γM,n =

√

[J−1
n ](33) + [J−1

n ](44)

2
. (55)

5. RESULTS AND DISCUSSION

Let’s consider a pico-cell scenario which covers indoor areas like
offices, museums etc which are characterized by NLOS multipath
propagations. The MS has an initial velocity of (vx,0, vy,0) =
(0.5,−0.5) m/s which is assumed to be an average indoor walk-
ing speed. The initial position of the MS is generated with the
distribution N ((20, 20)m, diag

(

202, 202
)

m2). L = 3 scatterers
are located at xS = (31, 40, 19)T m and yS = (18, 14, 26)T m.
The BS is positioned at pB = (0, 0) m. The sampling interval is
δt = 0.5 s and the total path length is N = 20. The signal carrier
frequency is fc = 2.4 GHz. The system noise covariance matrix is
Q = diag

(

0.52, 0.52
)

m2/s2. The covariance matrix of the initial
state vector is Qs = diag

(

202 · 1T
2(L+2)

)

. The standard deviation
of the noise for the range measurement from the TOA is σd, for the
AOD measurement is σψ, for the AOA measurement is σφ and for
the DS measurement is σf for each of the scatterers.

Fig. 2 shows the PCRLB γM,n versus the time instant n for
the parameters σd = 1 m, σψ = σφ = 5◦ and σf = 1 Hz. The
TOA/AOD/AOA/DS (d, ψ, φ, f) method has the lowest PCRLB as
it utilizes all the observations. The PCRLB of the TOA/AOD/AOA
(d,ψ, φ) method is also shown in the figure. At n = 1 there is
little difference between the PCRLB of the TOA/AOD/AOA/DS
(d,ψ, φ, f) method and the TOA/AOD/AOA (d,ψ, φ) method as
the DS observation provides little more information about the po-
sition of the MS than what is already extracted from the AOA
observation. However, after a few iterations, an almost constant gap
between the PCRLB of the TOA/AOD/AOA/DS (d, ψ, φ, f) method
and the TOA/AOD/AOA (d, ψ, φ) method develops which accounts
for the extra information obtained from the sequences of the DS ob-
servations. A higher PCRLB is obtained for the estimation based on
the TOA/AOD/DS (d, ψ, f) method which, however, significantly
improves as more and more observations are considered. At n = 1
the TOA/AOD/DS (d,ψ, f) method has a PCRLB value which
depends on the covariance matrix Qs as position estimation using
the TOA/AOD/DS (d, ψ, f) requires at least n = 2 time instants.

The performance of a TOA/AOD/AOA tracking algorithm using the
extended Kalman filter [11] proposed in [12] is also shown in Fig.
2. It can be seen that the performance is bounded by the PCRLB.

2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

 

 

n

γ
M
,n
/
m

(d,ψ, f)
(d, ψ, φ)
(d,ψ, φ, f)
EKF(d,ψ, φ)

Fig. 2. The PCRLB of the MS position γM,n and the extended
Kalman filter (EKF) algorithm versus the time instant n.

The Jacobian matrices of the AOA φn and the DS shift fn are
linearly related as follows

∇
θ
(2)
n

fn=
(

∇
θ
(2)
n
φn

)

Un, (56)

∇
θ
(1)
n+1

fn=

(

∇
θ
(1)
n+1

φn

)

Un +
fc
c

(

1T
LCφ,n

1T
LSφ,n

)

, (57)

where

Un =
fc
c
(−vx,nSφ,n + vy,nCφ,n) , (58)

Cφ,n = diag (cos φn,1, cos φn,2, . . . , cos φn,L) , (59)

Sφ,n = diag (sinφn,1, sinφn,2, . . . , sinφn,L) . (60)

It is thus possible to get the same performance from the TOA/AOD/DS
(d, ψ, f) sequences of observations as the TOA/AOD/AOA (d, ψ, φ)
sequences of observations. However, it is difficult to determine an-
alytically the relation between the σφ and the σf which result
in the same performance. It can also be seen from Fig. 2 that,
given sufficiently long sequences of observations, the PCRLB of
the TOA/AOD/DS (d, ψ, f) method approaches the PCRLB of the
TOA/AOD/AOA (d, ψ, φ) method. The TOA/AOD/DS (d, ψ, f)
method is attractive in that all the observations can be obtained by
employing multiple antennas at the BS only. Estimation of the AOA
at the MS requires multiple antennas at the MS which is difficult to
implement in hand-held MSs. Accommodating multiple antennas
in hand-held MSs is difficult due to physical space constraint. It is
also a challenging task to estimate the AOA while accounting for
the orientation of the MS. Besides, the antenna calibration process
for measuring the AOA which accounts for the usage conditions
of the hand–held MS is a daunting task. The downside of the
TOA/AOD/DS (d, ψ, f) method is that its performance depends on
the mobility of the MS.

6. CONCLUSIONS

We have presented the PCRLB for tracking an MS in an NLOS mul-
tipath environment. The developed PCRLB can be used to evalu-
ate the performance of a tracking algorithm which tracks an MS in
NLOS multipath environments. It has also been shown that the DS
observation can be exploited to yield a PCRLB comparable with that
when considering the AOA observations.
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