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ABSTRACT
The problems of node localization and clock synchronization
in wireless sensor networks are naturally tied from a statistical
signal processing perspective. In this work, we consider the
joint estimation of an unknown node’s location and clock pa-
rameters by incorporating the effect of imperfections in node
oscillators, which render a time varying nature to the clock pa-
rameters. In order to alleviate the computational complexity
associated with the optimal maximum a-posteriori estimator,
a simpler approach based on the Expectation-Maximization
(EM) algorithm is proposed which iteratively estimates the
clock parameters using a Kalman smoother in the E-step, and
the location of the unknown node in the M-step. The con-
vergence and the mean square error (MSE) performance of
the proposed algorithm are evaluated using simulation stud-
ies which demonstrate the high fidelity of the proposed joint
estimation approach.

Index Terms— Node localization, clock synchronization,
EM algorithm, wireless sensor networks

1. INTRODUCTION

Node localization is an important aspect of several WSN ap-
plications that require location-awareness such as geograph-
ical routing, disaster rescue, etc., [1], [2]. There is an ex-
tensive literature on location estimation algorithms in WSNs
[3]. In general, the range-based localization algorithms uti-
lize the metrics of time of arrival (TOA) [4], time difference
of arrival (TDOA) [5] and received signal strength (RSS) to
determine the distance between the unknown node and the an-
chors. Clock synchronization in sensor networks is a critical
component in data fusion and duty cycling operations, and
has gained widespread interest in recent years [6]. Several al-
gorithms have been proposed for the estimation of clock pa-
rameters under different network delay distributions [7], [8],
[9], [10]. Since TOA and TDOA are time-based techniques,
clock synchronization is an important prerequisite in node lo-
calization [11]. This connection between the problems of lo-
calization and synchronization necessitates a joint estimation
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approach [12]. Recently, several contributions have studied
joint localization and synchronization from a statistical signal
processing viewpoint. Optimal and sub-optimal algorithms
for estimating an unknown node’s position and clock param-
eters have been derived and compared with the Cramér-Rao
lower bound (CRB) in [13]. A weighted least squares ap-
proach for joint estimation is devised in [14]. Robust joint
estimation algorithms resistant to target node’s uncertainties
are derived in [15]. However, a common theme in these con-
tributions is the assumption of fixed clock parameters.

Sensor nodes are often deployed in harsh environmental
conditions which can degrade the quartz crystals over time.
Failure to cope with temporal variations can result in fre-
quent re-synchronization requests. Since power is primarily
consumed in radio transmission delivering timing informa-
tion [16], exchanging time-stamps for re-synchronization can
quickly drain a sensor’s energy resources. In this work, we
aim to introduce the notion of temporal variation in clock pa-
rameters for joint node localization and clock synchronization
in WSNs. We develop an iterative estimation approach based
on the Expectation-Maximization (EM) algorithm which
simplifies the otherwise computationally costly maximum
a-posteriori (MAP) estimator.

2. SYSTEM MODEL

The unknown node X, located at x = [x1, x2]
T , communi-

cates with the jth anchor node using a two-way message ex-
change mechanism as shown in Fig. 1. At the kth message
exchange, Node X transmits its current timing information to
the anchor through time-stamp Sj,k. The anchor records the
time Rj,k at at which this message is received according to
its own time scale. The jth anchor replies at time S̄j,k and
transmits a synchronization packet containing both the time-
stamps Rj,k and S̄j,k to Node X. This message is received at
time R̄j,k by Node X according to its own clock. Therefore,
after K exchanges with the jth anchor, Node X is equipped
with time-stamps

{
Sj,k, Rj,k, S̄j,k, R̄j,k

}K
k=1

. In this work, it
is assumed that the clock of Node X is related to the refer-
ence time t at each anchor node as CX (t) = αt+β, where α
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Fig. 1. A two-way timing message exchange mechanism

and β denote the clock skew and clock offset with respect to
the reference time, respectively. Hence, the aforementioned
two-way timing exchange process can be expressed as [17]

Sj,k = α (Rj,k − dj − wj,k) + β

R̄j,k = α
(
S̄j,k + dj + w̄j,k

)
+ β , (1)

where the measurement noise errors wj,k and w̄j,k are as-
sumed i.i.d. Gaussian with zero mean and variance σ2

w. The
fixed line-of-sight propagation delay, denoted by dj , is given

by1 dj = ‖x− sj‖. By defining θ1
∆
= 1

α and θ2
∆
= β

α , we can
equivalently express (1) as

yk − d (x) = Hkθ +wk , (2)

where yk=
[
R1,k,−S̄1,k, . . . , RN,k,−S̄N,k

]T
, the parameter

vector θ ∆
= [θ1 θ2]T , wk = [w1,k, w̄1,k, . . . , wN,k, w̄N,k],

d (x) =
[
d11

T
2×1, . . . , dN1T2×1

]T
, and the 2N × 2 matrix

Hk is given by

Hk =


S1,k −1
−R̄1,k 1

...
...

SN,k −1
−R̄N,k 1

 .

Since sensor nodes are usually deployed in harsh environ-
mental conditions, degradations in quartz oscillators render
a time-varying nature to the clock skew and offset of Node
X . In this work, it is assumed that the variations in the clock
parameters induce a Gauss-Markov evolution model for θ at
the kth message exchange, i.e.,

θk = θk−1 + nk , (3)

where nk is i.i.d zero mean Gaussian noise with covariance
matrix Pn = σ2

nI . This model helps to capture time varia-
tions and also lends mathematical simplicity to gain a theo-
retical insight into the problem of joint localization and time-
varying clock synchronization. Using (3), the two-way mes-
sage exchange model (2) at the kth round is now expressed

1The speed of light constant c is omitted for brevity.

as
yk − d (x) = Hkθk +wk . (4)

The joint distribution of y =
[
yT1 , . . . ,y

T
K

]T
and Θ =[

θT1 , . . . ,θ
T
K

]T
, parameterized by x, can be expressed as

f(y,Θ;x) = f (Θ) f (y|Θ;x)

=f (θ0)

K∏
k=1

f (θk|θk−1)

K∏
k=1

f (yk|θk;x) . (5)

The pdfs f (θk|θk−1) and f (yk|θk;x) are given by

f (θk|θk−1) = C1 exp

(
− (θk − θk−1)

T
(θk − θk−1)

2σ2
n

)
f (yk|θk;x) =

C2 exp

(
− (yk − d (x)−Hkθk)

T
(yk − d (x)−Hkθk)

2σ2
w

)
whereC1 andC2 are constants. Our goal is to jointly estimate
ξ =

[
ΘT ,xT

]T
using the time-stamps as well as the known

anchor locations sj , for j = 1, . . . , N .
The joint estimates of Θ and x can be obtained as{

Θ̂, x̂
}

= arg max
Θ,x

ln f(y,Θ;x) . (6)

Solving (6) requires inverting large matrices which is compu-
tationally demanding. In the next section, a simpler iterative
approach based on the EM algorithm is explored for joint lo-
calization and timing synchronization.

3. THE EM ALGORITHM

Assuming that the data y is incomplete, the complete data
vector is defined as z ∆

=
[
yT ,ΘT

]T
. The expectation and

maximization steps in the EM algorithm can be described as
follows [18].

E-Step:
Given an estimate x̂(i) of the unknown node’s location at it-
eration i, and the observed data y, determine the likelihood
function

Q
(
x, x̂(i)

)
∆
= EΘ|y,x̂(i) [ln f (z;x)] . (7)

M-Step:
Obtain an estimate of x at iteration index i+1 by maximizing
Q
(
x, x̂(i)

)
, i.e.,

x̂(i+1) = arg max
x

Q
(
x, x̂(i)

)
. (8)

The E-Step and M-Step are repeated until convergence. After
each iteration, we are guaranteed to converge towards a local
maximum [18].

5171



Using (5), it follows that

ln f (z;x)= C− 1

2σ2
w

K∑
k=1

(ỹk (x)−Hkθk)
T
(ỹk (x)−Hkθk)

(9)
where ỹk (x)

∆
= yk − d (x) and the terms that do not depend

on x are collected in the constant C . The likelihood function
at the ith iteration, Q

(
x, x̂(i)

)
, can be evaluated as

Q
(
x, x̂(i)

)
=

EΘ|y,x̂(i)

[
− 1

2σ2
w

K∑
k=1

(ỹk (x)−Hkθk)
T

(ỹk (x)−Hkθk)

]

= − 1

2σ2
w

K∑
k=1

Tr

{
EΘ|y,x̂(i)

[
(ỹk (x)−Hkθk) ·

(ỹk (x)−Hkθk)
T

]}
.

(10)

By defining

θ̂
(i)
k|K

∆
= EΘ|y,x̂(i) [θk] , R̂

(i)
k|K

∆
= EΘ|y,x̂(i)

[
θkθ

T
k

]
,

the likelihood function in (10) can be expressed as

Q
(
x, x̂(i)

)
=
−1

2σ2
w

K∑
k=1

Tr
{
ỹk (x) ỹTk (x) +HkR̂

(i)
k|KH

T
k

−ỹk (x) θ̂
(i)T

k|KH
T
k −Hkθ̂

(i)
k|K ỹ

T
k (x)

}
. (11)

After some algebraic steps, (11) can be equivalently written
as

Q
(
x, x̂(i)

)
= − 1

2σ2
w

K∑
k=1

Tr

{
HkΣ̂

(i)
k|KH

T
k

+
(
ỹk (x)−Hkθ̂

(i)
k|K

)(
ỹk (x)−Hkθ̂

(i)
k|K

)T}
(12)

where
Σ̂

(i)
k|K

∆
= R̂

(i)
k|K − θ̂

(i)
k|K θ̂

(i)T

k|K .

Given an estimate x̂(i), it can be observed that (3) and (4) rep-
resent a linear Gaussian model. The minimum mean square
error (MMSE) estimator θ̂(i)

k|K can be obtained from a stan-
dard Kalman smoother. The forward recursion for obtaining
θ̂

(i)
k|k can be expressed as follows [19].

Forward Recursion
Prediction:

θ̂
(i)
k|k−1 = θ̂

(i)
k−1|k−1

Σ̂
(i)
k|k−1 = Σ̂

(i)
k−1|k−1 + σ2

nI (13)

Correction:

κk = Σ̂
(i)
k|k−1H

T
k

(
HkΣ̂

(i)
k|k−1H

T
k + σ2

wI
)

θ̂
(i)
k|k = θ̂

(i)
k|k−1 + κk

(
ỹk

(
x̂(i)

)
−Hkθ̂

(i)
k|k−1

)
Σ̂

(i)
k|k = (I − κkHk) Σ̂

(i)
k|k−1 (14)

The operation of a smoother is completed by employing a
backward sweep that produces the smoothed estimates θ̂(i)

k|K

and Σ̂
(i)
k|K . The recursions of the Rauch-Tung-Striebel (RTS)

smoother are given as follows [20].

Backward Recursion

Bk−1 = Σ̂
(i)
k−1|k−1Σ̂

(i)−1

k|k−1

θ̂
(i)
k−1|K = θ̂

(i)
k−1|k−1 +Bk−1

(
θ̂

(i)
k|K − θ̂

(i)
k|k−1

)
Σ̂

(i)
k−1|K = Σ̂

(i)
k−1|k−1 +Bk−1

(
Σ̂

(i)
k|K − Σ̂

(i)
k|k−1

)
BT
k−1 .

(15)

Using θ̂(i)
k|K , the estimates of α and β can, in turn, be

obtained by using the transformation in defined in Section 2.
The resulting estimates are sub-optimal since, in general, the
MAP estimator does not commute over non-linear transfor-
mations. However, the sub-optimal estimators show good fi-
delity performance as shown in Section 4.

The M-step can now be expressed using (8) as

x̂(i+1) = arg max
x

−1

2σ2
w

K∑
k=1

Tr
{
HkΣ̂

(i)
k|KH

T
k

+
(
ỹk (x)−Hkθ̂

(i)
k|K

)(
ỹk (x)−Hkθ̂

(i)
k|K

)T}
.

After some simplifications, the estimate x̂(i+1) is given as the
solution of a 2-D norm minimization problem

x̂(i+1) = arg min
x

K∑
k=1

∥∥∥ỹk (x)−Hkθ̂
(i)
k|K

∥∥∥2

. (16)

A closed form solution of the aforementioned minimization
problem does not exist. The interior point methods can be
used to obtain the estimates x̂(i+1) [21].

The EM algorithm, therefore, provides estimates of Θ
and x by alternating between the E and M-steps, respec-
tively. The algorithm is terminated when the sequence
x̂(1), x̂(2), x̂(3), . . . converges.

4. SIMULATION RESULTS

This section presents simulation results to evaluate the con-
vergence and MSE performance of the proposed EM algo-
rithm. The clock skew and offset are drawn randomly from
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w for K = 4 and K = 8.

[0.998, 1.002] and [1, 10], respectively. Unless stated other-
wise, the location of Node X is generated by drawing x1 and
x2 randomly from [1, 10].

In order to show the updates in the EM algorithm, the
simulation results are averaged over 100 realizations of x =
(2, 4) with σ2

w = 10−1 and K = 2. Fig. 2 shows the updates
in the likelihood function exp

(
Q
(
x, x̂(i)

))
as a function of

x as i increases. Clearly, exp
(
Q
(
x, x̂(i)

))
is a concave func-

tion and hence, does not present any local maxima. This al-
lows the algorithm to converge at the solution uniquely.

Fig. 3 illustrates the MSE of the location estimate as σ2
w

decreases. The MSE decays with a decrease in σ2
w and the

decay increases as K increases from K = 4 to K = 8. In
addition, the MSE remains fairly close to the theoretical hy-
brid Cramer-Rao bound (HCRB), derived in [22], but does
not attain it. This could potentially be due to the reason that
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Fig. 4. A comparison of MSE of skew estimates versus mea-
surement noise variance σ2

w for K = 4.

HCRB is known to be less tight for the non-random part of
the parameters [23]. The MSE of the skew and offset esti-
mates provided by the EM algorithm is illustrated in Fig. 4 as
the measurement noise decreases. It is observed that the pro-
posed estimator has high fidelity and matches closely with the
lower bound provided by HCRB. It can also be noticed that
the MSE incurred in estimating clock offset is higher than the
corresponding values for clock skew.

5. CONCLUSIONS
In this work, joint localization and time-varying clock syn-
chronization of an unknown node is considered. An iterative
approach using the EM algorithm is proposed which itera-
tively estimates the unknown node’s location by considering
the clock parameters as hidden variables. Simulation results
corroborate our theoretical findings and demonstrate the high
accuracy of the proposed EM algorithm.
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