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ABSTRACT

In this paper, we consider the extension of the capabilities of au-
tonomous underwater vehicles (AUV’s) to operate in pairs, thus rep-
resenting each pair of sonars as a bistatic sonar. We utilize principles
from the emerging MIMO radar theory, considering both the sonar
transmitter and the sonar receiver as systems of closely spaced anten-
nas that transmit/receive multiple linearly independent waveforms.
Our objective is to formulate a covariance matrix that allows inde-
pendent direction of arrival (DOA), direction of departure (DOD),
and target strength estimation with reduced complexity. Simulation
results demonstrate the effectiveness of the proposed method.

Index Terms— AUV, radar, sonar, MIMO, DOA, DOD.

1. INTRODUCTION

Underwater sensing has received considerable attention over the
past years, due to the increased use of unmanned marine vehicles,
both underwater vehicles known as autonomous underwater vehi-
cles (AUV’s) and surface vehicles [1], and the evolving potential
for sensor network deployment for underwater exploration. Al-
though seawater is much more complicated as a medium for sound
propagation [2] than air is for electromagnetic wave propagation,
sonar development [3–6] has been based on the principles of radar
theory [7–9].

In particular, sound speed propagation in seawater is almost con-
stant in shallow water regions, with mild temperature/ salinity vari-
ations from the surface to the bottom, relatively low water pollu-
tion, and relatively high carrier frequency. AUV’s thrive in these
regions, equipped with sensors like multibeam and sidescan sonars
[10]. However, the increasing demands for underwater exploration
present new challenges that shall increase the overall effectiveness
of AUV’s, such as operation in pairs or in swarm mode. The poten-
tial for use of AUV’s in pairs leads to the consideration of bistatic
sonar (borrowing ideas from bistatic radar, [11]) as a sonar whose
transmitter and receiver are widely separated arrays of transceiver
hydrophones.

A wealth of works have addressed the problem of bistatic radar,
a number of them using the emerging MIMO radar theory [12]. Un-
like a phased-array radar, which transmits scaled versions of a single
waveform, a MIMO radar system transmits multiple diverse (possi-
bly linearly independent) waveforms via its antennas. This wave-
form diversity enables superior capabilities compared with a stan-
dard phased-array radar [13].
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A basic problem with bistatic radar is the joint estimation at the
receiver of the RCS (target strength in sonar terminology) β(θt, θr),
for each direction-of-arrival (DOA) / direction-of-departure (DOD)
pair of interest (θt, θr) from the observed data matrix. The estimates
of β(θt, θr) are used to form a two-dimensional spatial spectrum.
The locations of the targets are estimated, together with the complex
amplitudes of their target strengths, by searching the peaks of the
obtained spectrum. In the following, we assume that the transmit
array has Mt elements, the receive array has Mr elements, there are
K targets at every range bin, and each pulse consists of a train of N
subpulses.

A few works have addressed the issue of formation and ma-
nipulation of the observed data matrix of the bistatic MIMO radar.
In [14], Bekkerman et al. form a data vector of size MtMr × 1 after
matching the received array samples with the transmitted signal vec-
tor, rearrange columnwise, and form the covariance matrix by mul-
tiplication of the data vector with its conjugate transpose, however a
bistatic case is not considered explicitly. In [15], Yan et al. assume a
2-D model, form a data matrix of sizeMtMr×N as in [14], and per-
form Capon estimation using the resulting correlation matrix of size
MtMr×MtMr . In [16], Jiang et al. assume a 3-D model where the
receive array is a rectangular grid and use the ESPRIT algorithm on
a correlation matrix that is formed on the same principles. ESPRIT-
based methods are also used in [17], [18], [19], and [20]. In [21], Liu
et al. reduce the problem of DOA and DOD estimation to two 1-D
searches and compute a mutual coupling coefficient. In [22], Nion
and Sidiropoulos use the parallel factor (PARAFAC) model to per-
form target localization. In [23], Cheng et al. formulate the matched
filter output to a 5th-order tensor using a PARAFAC model. In [24],
Hassanien et al. form the data vector in the same manner as in [14],
although their main consideration is target estimation with Doppler
shift in noncoherent MIMO radars.

1.1. Our Contribution

In this paper we perform independent DOA, DOD, and target esti-
mation of a bistatic MIMO sonar considered as a pair of uniform
linear arrays (ULAs) in a 2-D environment by forming two sepa-
rate covariance matrices and performing two 1-D searches with re-
duced complexity and in a form that is suitable for previous esti-
mation methods. We also assume that transmitter and receiver are
widely separated and are moving independently, with no means of
synchronization between them. The proposed algorithm is subop-
timal by nature, however it exhibits near-optimal performance with
an increasing number of array elements at the transmitter and the
receiver. Furthermore, the problem of determining the target po-
sition based on the estimated target direction is addressed. Future
papers topics would be the performance comparison between var-
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Fig. 1. Bistatic radar.

ious nonparametric estimators including the Capon estimator (also
with Doppler shift), the performance comparison between particular
transmit signal designs, and the generalization in 3 dimensions.

2. BISTATIC MIMO SONAR SIGNAL MODEL

We consider a two-dimensional bistatic sonar system where both the
Transmitter (Tx) and the Receiver (Rx) are located underwater in
a shallow water region, where the maximum sea-bottom depth and
the distance between Tx and Rx are in the same order of magnitude.
Furthermore the wavelength λ of the acoustic transmission is much
smaller than the maximum depth, therefore the ray theory is appli-
cable. We are working in two dimensions and assume that there is
no motion of either targets or the transmitter-receiver pair, thus no
Doppler shift.

As it is illustrated in Fig. 1, the baseline 2αe is the distance
between Tx and Rx. The factor e is the eccentricity of an ellipse
(0 < e < 1) which is defined as an isorange contour and α is the
semi-major axis of the ellipse. Angle γ is the bistatic angle. Both
angles θt and θr are measured clockwise positive (−π/2 ≤ θt, θr ≤
π/2) relative to the baseline normal. Angles φt and φr are measured
relative to the baseline and are also clockwise positive.

The discrete-time vector output signal at the receiver array can
be formed as

y(n) =

K∑
k=1

βkb
∗
ka
H
k x(n) + w(n) (1)

where βk is the target strength (the equivalent of RCS in radar theory,
considered as Swerling type I) of target k = 1, 2, . . . ,K and w(n)
denotes additive white noise at the receive array with E

[
wwH

]
=

σ2
wIMr and

ak
4
=
[
ej2πf0τ0,k . . . ej2πf0τMt−1,k

]T
and

bk
4
=
[
ej2πf0τ̃0,k . . . ej2πf0τ̃Mr−1,k

]T
are the vectors of the acoustic wave travel from Tx to the target and
from the target to Rx, respectively. The terms τmt,k and τ̃mr,k are
the time intervals for the acoustic ray to travel from the mt element
of the transmit array to the k-point target and then to themr element
of the receive array, that is,

τmt,k
4
=
Rt,k
vs
− mtDt

vs
sin (θt,k − φt) (2)

and

τ̃mr,k
4
=
Rr,k
vs
− mrDr

vs
sin (θr,k − φr) (3)

for φt − π/2 < θt,k < φt + π/2 and for φr − π/2 < θr,k <
φr+π/2, respectively. The term vs is the speed of sound in seawater
(assumed constant), f0 is the sound frequency, Rt,k is the distance
from the first element of the transmit array to the k-target, Rr,k is
the distance from the k-target to the first element of the receiver, Dt
is the Tx inter-element spacing, Dr is the Rx inter-element spacing,
mt = 0, 1, . . . ,Mt − 1, and mr = 0, 1, . . . ,Mr − 1. Then,

b∗mr,k · a
∗
mt,k = e−j2πf0τ̃mr,k · e−j2πf0τmt,k =

exp

[
−j2πRt,k +Rr,k

λ

]
· exp [jmtgt,k + jmrgr,k] (4)

where

gt,k
4
= 2πDt

λ
sin (θt,k − φt) , gr,k

4
= 2πDr

λ
sin (θr,k − φr) .

(5)
Assuming that Dt = Dr = λ/2 to avoid aliasing and under the

assumption that all targets have the same bistatic range, (1) can be
restated as

y(n) = exp

[
−j2π 2α

λ

]
·

(
K∑
k=1

βkr
∗
kt
H
k

)
x(n) + w(n). (6)

We define by M =
∑K
k=1 βkr

∗
kt
H
k the target matrix which, under

the constraints K ≤ Mt and K ≤ Mr , can be rearranged in the
form

M = R∗BTH = [r∗1 r∗2 · · · r∗K ] ·
β1 0 · · · · · ·
0 β2 0 · · ·
...

...
. . .

...
0 · · · · · · βK

 ·


tH1
tH2
...

tHK

 (7)

where

rk =



e−j(Mr−k+1)gr,k

...
e−j(Mr−1)gr,k

1
e−jgr,k

...
e−j(Mr−k)gr,k


, tk =



e−j(Mt−k+1)gt,k

...
e−j(Mt−1)gt,k

1
e−jgt,k

...
e−j(Mt−k)gt,k


.

1
...

k − 1
k

k + 1
...
Mt

Thus,

1

Mt
THT =

1

Mt


tH1
tH2
...

tHK

 [t1 t2 · · · tK
]
. (8)

The elements of the main diagonal of 1
Mt

THT are equal to 1. Con-
sider indices k and l, where k < l, l − k = d and k, l ≤ K. Then,
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the off-diagonal elements of THT can be formed as

(
THT

)
(k,l)

= ejdgt,l
Mt−1∑

mt=Mt−k+1

ejmt(gt,k−gt,l)+

+e−j(Mt−d)gt,l
d−1∑
mt=0

ejmt(gt,k−gt,l)+ejdgt,l
Mt−l∑
mt=0

ejmt(gt,k−gt,l).

(9)

Based on (9), matrix 1
Mt

THT is a K × K matrix whose
elements represent the mutual coupling between targets as “ob-
served” from the transmit array. The matrix is hermitian symmetric,
thus diagonalizable. All the elements on the main diagonal equal
to 1 and the off-diagonal elements tend to 0 for increasing Mt,
being the weighted sums of complex sinusoids. For increasing
Mt, 1

Mt
THT ≈ IK . From singular value decomposition (SVD),

M = UΣVH where U contains the left singular vectors, V con-
tains the right singular vectors, and Σ is a diagonalMr×Mt matrix
whose elements are the positive singular values, thus

1

Mt
MMH = R∗B

(
1

Mt
THT

)
BHRT =

= UΣ

(
1

Mt
VHV

)
ΣHUH ≈ R∗BBHRT (10)

where BBH = BHB is a diagonal K × K matrix whose ele-
ments on the main diagonal are the square magnitudes of the target
strengths (|βk|2, k = 1, . . . ,K). If we follow the same reasoning,
then 1

Mr
RTR∗ ≈ IK . Thus,

1

Mr
MHM = TBH

(
1

Mt
RTR∗

)
BTH =

VΣH

(
1

Mr
UHU

)
ΣVH ≈ TBHBTH (11)

Equations (10) and (11) indicate that, even if 1
Mt

THT does not
approximate the identity matrix IK properly, estimating θr is inde-
pendent of the knowledge of θt and vice versa. This is in accordance
with the results of [25], where CRLBθr,θt = 0.

3. TARGET ESTIMATION

To extend our analysis to more than one time sample, the transmit
array broadcasts a pulse train composed of N vector subpulses si-
multaneously emitted from all array elements. An attenuated replica
of the pulse train arrives at the receive array from K targets at the
same range, thus

Y(n) = MX + W(n) (12)

where

Y(n) =
[
y(n−N + 1) y(n−N + 2) · · · y(n)

]
and

X =
[
x(1) x(2) · · · x(n) · · · x(N)

]
.

We define R̂xx
4
= XXH =

∑N
n=1 x(n)xH(n) = σ2

xIMt and

W(n) =
[
w(n−N + 1) w(n−N + 2) · · · w(n)

]

where W represents spatio-temporal white noise with covariance
matrix with E

[
W(n)WH(n)

]
=
∑n
i=n−N+1E

[
w(i)wH(i)

]
=

Nσ2
wIMr , and E

[
WH(n)W(n)

]
=Mrσ

2
wIN . We also define

Ryyr = E
[
Y(n)XH · (Y(n)XH)H

]
=

= E
[(

MXXH + W(n)XH
)(

XXHMH + XWH(n)
)]

= σ4
xMMH + E

[
W(n)XHXWH(n)

]
≈Mtσ

4
xR
∗|B|2RT +Mtσ

2
xσ

2
wIMr (13)

where

E
[
W(n)XHXWH(n)

]
= E

[
N∑
i=1

w(n−N + i)xH(i)

N∑
j=1

x(j)wH(n−N + j)

]

= E

[
N∑
i=1

w(n−N + i)xH(i)x(i)wH(n−N + i)

]
+ 0

=

N∑
i=1

xH(i)x(i)E
[
w(n−N + i)wH(n−N + i)

]
= σ2

wIMr trace(XHX) =Mtσ
2
xσ

2
wIMr (14)

and

Ryyt = E
[
(Y(n)XH)H ·Y(n)XH

]
= E

[
(XYH(n)Y(n)XH

]
= σ4

xM
HM + XE

[
WHW

]
XH

= σ4
xM

HM +Mrσ
2
wXINXH

≈Mrσ
4
xT|B|2TH +Mrσ

2
wσ

2
xIMt . (15)

At this point, we can perform target estimation, based on the co-
variance matrices of (13) and (15). A conventional method is the
use of Capon estimators, however the form of the obtained covari-
ance matrices permits the use of other nonparametric target estima-
tion methods. Due to the fact that that we have limited data avail-
able, we typically form the sample covariance matrices, R̂yyr =
YXHXYH and Ryyt = XYHYXH . For DOD estimation, the
Capon spatial design problem is

min
v

(vHRyyrv) subject to vHr(θr) = 1. (16)

The solution to (16) is given by (see [26])

v =
1

rH(θr)R
−1
yyrr(θr)

R−1
yyrr(θr). (17)

The Capon DOD estimates are obtained as the locations of the K
largest peaks of the function in (17). Equivalently, for the DOA,

min
u

(uHRyytu) subject to uHt(θt) = 1 (18)

with
u =

1

tH(θt)R
−1
yytt(θt)

R−1
yytt(θt). (19)

From (17) and (19), we can estimate βk, gr,k and gt,k for all K
targets. However, the goal of the previous procedure is to estimate
the target positions, or Rr,k and Rt,k. There are three options.
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Fig. 2. Bistatic sonar by separate AUVs.

• The position and orientation of both the transmitter and the
receiver are known, or L, φt, and φr are known. Then,
the estimation of the target positions is straightforward,
since Rt,k/L = cos θr,k/ sin(θt,k − θr,k) and Rr,k/L =
cos θt,k/ sin(θt,k − θr,k) ( [11], Ch. 3).

• The position and orientation of both transmit and receive
ULA are not known and the target positions cannot be esti-
mated directly.

• The relative orientation between transmit and receive ULA
are known, or L remains unknown but φt − φr = φ with φ
known, which we will extend shortly.

With some rearrangement of the bistatic radar theory equations
( [11], Ch. 3), each target on the same isorange ellipse should comply
with

Rt +Rr
L

=
1

e
=

cos θt + cos θr
sin(θt − θr)

=
2 cos

(
θt+θr

2

)
cos
(
θt−θr

2

)
sin(θt − θr)

.

(20)
In (20), the quantity h = θt−θr = arcsin(gt/π)−arcsin(gr/π)+
φ is estimated, while x1 = θt + θr and x2 = 1/e are un-
known. We can use the series expansion of arccosx = π/2 −∑∞
n=0 x

2n+1
(
(2n)!/22n(n!)2(2n+ 1)

)
= π/2 − x − x3/6 −

3x5/40− . . . ≈ π/2− x for |x| < 1 to obtain

2 cos
(
θt+θr

2

)
cos
(
h
2

)
sinh

=
1

e
⇒ x1 = arccos

(
x2

sinh

2 cos
(
h
2

))⇒
x1 ≈ π/2−

sinh

2 cos
(
h
2

)x2 ⇒ x1 +
sinh

2 cos
(
h
2

)x2 ≈ π/2 (21)

Considering all K targets, we can form an overdetermined sys-
tem of equations to produce a least-squares solution for the target an-
gular orientation (θt+θr) and range bin eccentricity (L/(Rt+Rr)),
with free parameter the baseline L, that can be estimated from the
time difference of arrival (TDOA) between different range bins. A
possible scenario is illustrated in Fig. 2, where there are two AUV’s
with ULA attached on their keels, moving horizontally with zero
trim (or with pre-defined trim) and performing bottom mapping.

4. SIMULATION RESULTS

To illustrate the proposed algorithm, we perform a comparison with
the algorithm from [15], since Yan et al. use the Capon estima-
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Fig. 3. Simulation results.

tor. Our objective is to illustrate that the covariance matrix for-
mulation of the proposed algorithm is superior to the formulation
used in [15] and other works. We set the number of elements Mt

of the transmit ULA to 3, the number Mr of elements of the re-
ceive ULA to 3, and the number of pulses of the transmitted pulse
train N to 8. The pulses were produced at random. We also set the
baseline L = 50m, the sound frequency f0 = 20kHz, the sound
speed v = 1500m/sec, the total travel time Rt + Rr = 100m,
φt = φr = 0, and one target at θr = −π/4. The target strength
β of the target was set to 1, the range from −1 to 1 was divided to
Ngrd = 90 sectors, and the simulation was repeated 1000 times for
each SNR in the range from −15 to 20 dB.

We can see in Fig. 3 that the algorithm by Yan et al. lacks the
ability to estimate β, producing small estimates for all SNRs, due to
the fact that the covariance matrix is close to singular. Apart from the
improved performance of the proposed algorithm in terms of DOD,
DOA, and target strength estimation, the complexity is significantly
reduced as well. Instead of O

(
N2
grd × (Mt ×Mr)

3
)

operations,
only O

(
Ngrd × (M3

t +M3
r )
)

operations are required.
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