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ABSTRACT

Localization accuracy is crucial in sensor networks. A wire-
less sensor network (WSN) with M anchors and one node
is considered in this paper. The estimation is based on time
of arrival (TOA) in the presence of fading channels. The
Cramer-Rao lower bound (CRLB) for localization error in
the presence of fading is derived under different scenarios.
Firstly, fading coefficients are considered as unknown ran-
dom parameters with a prior distribution. The ML estimator
for this case is also derived. If the distribution of fading is
unknown to the estimator then the modified CRLB (MCRLB)
is applied and shown to be equal to the CRLB in the absence
of fading. This is used to conclude that fading always dete-
riorates the CRLB in localization. It is shown that there is a
loss of about 5dB in CRLB due to Rayleigh fading.

Index Terms— time of arrival, Cramer-Rao lower bound,
fading, ML estimator, localization, wireless sensor networks

1. INTRODUCTION

In many applications, measured sensor data is meaningful
only when the location of sensors is accurately known. In
localization problems, sensor nodes at known locations, an-
chors, transmit signals to sensor nodes at unknown locations,
nodes, and use these transmissions to estimate the TOA,
which leads to location estimation [1–3]. In [4] the CRLB
on the variance of localization error is derived by assuming
Gaussian TOA measurements. Also, the CRLB in a multi-
path environment is derived with TOA measurements in [5].
Reference [6] considers a cooperative sensor network in the
absence of fading, and derives the CRLB. In [7], the variance
of TOA measurements is assumed to be a function of the
distance between the node and the anchor, and the CRLB is
derived, whereas [8] considers biased measurements. De-
spite the prevalence of fading in practice, none of these work
have studied the CRLB for localization under fading environ-
ments. Although [9] has studied the CRLB in the presence of
Rayleigh fading under received signal strength (RSS) estima-
tion method, and some existing work has considered fading
environments for TOA measurements [10] [11], CRLB for
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localization error under fading environments for the TOA
method has not been studied.

In this paper, we consider localization in the presence of
fading. The fading coefficients are considered as either un-
known random parameters with a prior distribution or with-
out any prior distribution known at the estimator. CRLBs are
derived for both one dimensional (1-D) and two dimensional
(2-D) localization problems with TOA measurements. Our
results are compared with the CRLBs in the absence of fad-
ing that were derived in [4]. The ML estimator in the presence
of fading is derived. Also, the MCRLB in fading is shown to
be equal to the CRLB in the AWGN case.

The rest of this paper is organized as follows. In Section
2, the system model is presented, and the CRLB in the pres-
ence of fading for localization error is derived under different
scenarios. The ML estimator in fading environments is also
derived. Following this, in Section 3, simulations are used
to compare the CRLBs that are derived in Section 2, and the
fading ML estimator is compared with the ML estimator that
was derived in [4]. In Section 4, concluding remarks are pre-
sented.

2. LOCALIZATION IN THE PRESENCE OF FADING

2.1. System Model

Assume that a non-cooperative wireless sensor network, in
which nodes do not communicate with each other, contains
M anchors and N nodes in Rn, where n = 1, 2. The vector
p = [p1,p2, . . . ,pM ] contains the cartesian coordinates of
all anchors, and z = [z1, z2, . . . , zN ] is the vector of node
locations. In 1-D, the location of the ith anchor, pi = xi, and
the jth node, zj = xj are scalars. In 2-D, pi = [xi, yi]

T and
zj = [xj , yj ]

T are vectors. As we assume the network is non-
cooperative, the CRLB on the variance of the location error
for each node is independent of the other nodes. Therefore,
to simplify the problem statement, we only assume one node
exists in the network at location z.

We assume the node communicates with all anchors. Each
anchor transmits a signal to a node, and the node sends back
the signal immediately after receiving it. Each anchor mea-
sures the round-trip time and halves it to obtain the TOA es-
timates τ̂i between the ith anchor and the node. Using these
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Fig. 1. Three anchors are present at positions p =
[p1,p2,p3], and 1 node at the position z = [x, y]T . Vari-
ables τ̂i, di and hi are the TOA measurement, distance and
the channel fading coefficient between the node and the ith

anchor respectively, where τ̂i is the function of di and hi in
the presence of fading.

values, the location of the node is estimated. Figure 1 shows
an example of three anchors and one node. The channels be-
tween anchors and the node are subject to additive noise and
fading. In the absence of fading, the fading coefficients hi

in Figure 1 are set to 1. The distribution of τ̂i in this case is
known to be [4]

τ̂i ∼ N
(
di
c
, σ2

T

)
, (1)

where di is the true distance between the ith anchor and the
node, which is denoted as ||pi − z||2. Here, || · ||2 is the
Euclidean norm, c is the speed of propagation, and σ2

T is the
variance of the TOA estimates on the channel.

In the presence of fading, the measurement τ̂i is a func-
tion of di and hi (as shown in Figure 1), and the following
scenarios will be considered. Firstly, fading coefficients are
assumed to be random with a prior distribution known at the
estimator. In this case, the unconditional distribution of the
TOA measurements can be calculated by averaging across
the fading to derive the CRLB [12]. In the second scenario,
fading coefficients as still considered as random parameters;
however, the prior distribution is unknown to the estimator so
that the fading effect in the previous scenario cannot be aver-
aged out. In this case, the modified CRLB (MCRLB), which
does not need the full knowledge of the fading distribution, is
applied [13].

2.2. Fading coefficients as random parameters

Assume fading is not changing during all TOA measure-
ments. Also, fading coefficients are random parameters with
a prior Nakagami distribution. The TOA measurements τ̂i are
assumed to be i.i.d. and conditioned on the fading coefficients
satisfy

τ̂i

∣∣∣|hi|2 ∼ N
(
di
c
,
σ2
T

|hi|2

)
, (2)

where the fading power is Gamma distributed and given by
[14]

f|hi|2(x) = mmxm−1Γ(m)−1exp(−mx), (3)

where m is the fading parameter, and Ehi

(
|hi|2

)
is the aver-

age received power at the node and is fixed to 1. When m = 1,
the fading |hi| is Rayleigh distributed, and as m → ∞, the
channel exhibits no fading so that the AWGN dominates.

The unconditioned distribution of τ̂i can be calculated by
using the formula

fτ̂i(τ̂i|z) =
∫ ∞

0

f
(
τ̂i

∣∣∣|hi|2, z
)
f|hi|2(x)d|hi|2. (4)

By substituting (2) and (3) into (4), using the formula in [15]
and carrying out the integration we obtain

fτ̂i(τ̂i|z) =
mm(m− 1

2
)!

2
√

2πσ2
TΓ(m)

[
1

2σ2
T
(τ̂i − di

c
)2 +m

](m+ 1
2
)
. (5)

Define the vector h = [h1, h2, . . . , hM ] containing all fad-
ing coefficients between the node and M anchors, and T =
[τ̂1, τ̂2, . . . , τ̂M ] is the vector of TOA measurements. Also de-
fine l(T|z) =

∑M
i=1 lnfτ̂i(τ̂i|z) as the log-likelihood function

of f (T|z), where f (T|z) =
∏M

i=1 fτ̂i(τ̂i|z). Based on the
log-likelihood, the CRLB can be expressed as [12]

CRLB =

[
ET

{[(
∂l(T|z)

∂z

)2
]}]−1

. (6)

For convenience, Let l(τ̂i|z) = lnfτ̂i(τ̂i|z) be the log like-
lihood function of each TOA measurement. Then the Fisher
information matrix (FIM), Fz, of the node location in Rn is
denoted as [Fz]jk = fjk, and

fjk =


∑M

i=1 Eτ̂i

[(
∂l(τ̂i|z)

∂zj

)2]
j = k

−
∑M

i=1 Eτ̂i

[
∂2l(τ̂i|z)
∂zj∂zk

]
j ̸= k

. (7)

In 1-D, the location of the node is z = x and the distance
between the node and the ith anchor is di = ||xi − x||2 =

|xi −x|. Using Fz =
∑M

i=1 Eτ̂i

[(
∂l(τ̂i|z)

∂z

)2]
, l(τ̂i|z) can be

calculated using (5), as

Eτ̂i

[(
∂l(τ̂i|z)

∂z

)2
]
=

mm(m− 1
2 )!(m+ 1

2 )
2

Γ(m)
√
2πc2σ5

T

X(di), (8)

where

X(di) =

∫ ∞

0

(τ̂i − di

c )
2[

1
2σ2

T
(τ̂i − di

c )
2 +m

] 5
2+m

dτ̂i. (9)
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Unlike the AWGN case, the Fisher Information (FI) depends
on di through X(di) in (9). However, using [15] it is possible
to express it as

X(di) ≤
√
2σ3

TΓ(
3
2 )Γ(m+ 1)

m1+mΓ(m+ 5
2 )

+

(
di

c

)2[
1

2σ2
T
(di

c )
2 +m

] 5
2+m

.

(10)
Since the second term in (10) is small (di/c ≈ 0), it is clear
that X(di) can be approximated by the first term, and there-
fore approximately independent of di. Whether we use the
term X(di), or its approximation in (10), the CRLB in the
presence of Nakagami fading is

CRLB1-D(z) =
Γ(m)

√
2πc2σ5

T

mm(m− 1
2 )!(m+ 1

2 )
2
∑M

i=1 X(di)
. (11)

Using only the first term in (10), the loss due to fading can
be expressed as

CRLB1-D(z)

CRLBAWGN
1-D

≈ k =

√
πΓ(m+ 5

2 )

Γ( 32 )(m+ 1
2 )

2
(
m− 1

2

)
!
, (12)

where we recall that CRLBAWGN
1-D = c2σ2

T /M [4]. When m →
∞, the second term in (10) goes to 0 and k in (12) goes to 1
so that the CRLB in the presence of fading converges to the
AWGN case.

When m = 1, the fading is Rayleigh distributed, (11) is
simplified as

CRLB1-D(z) = 9
[
8
√
2c2σ5

T

]−1
(

M∑
i=1

X(di)

)
, (13)

and X(di) is

X(di) =

(
di
c

)3
[(

di

c

)2
σ2
T

+ 5

]15

[(
di

c

)2
2σ2

T

+ 1

]5/2−1

.

(14)
Simplifying (13) for small σ2

T (high SNR), we obtain

CRLB1-D(z) =
σ2
T c

2

M

10

3
+ o

(
σ2
T

)
. (15)

This shows that the loss in SNR due to Rayleigh fading is a
factor of k , 10

3 , which is about 5dB.
In 2-D, the distance between the node and the ith anchor

is di =
√
(xi − x)2 + (yi − y)2, and let Y (m) = mm(m −

1
2 )!(m+ 1

2 )
2
[
Γ(m)

√
2πc2σ5

T

]−1
, and the FIM is

Fz = Y (m)
M∑
i=1

 (xi−x)2X(di)
d2
i

(yi−y)(xi−x)X(di)
d2
i

(yi−y)(xi−x)X(di)
d2
i

(yi−y)2X(di)
d2
i

 .

(16)
Therefore, the CRLB on the variance of the localization error
in 2-D is shown as [4]

CRLB2-D(z) = tr
(
F−1

z

)
. (17)

By comparing (17) with the CRLB in the absence of fad-
ing in [4], both CRLBs in 2-D depend on the true location of
the node. However, it is still possible to see that CRLB2-D(z)
is also a factor of k higher than the AWGN counterpart.
Meanwhile, as m → ∞, the CRLB in 2-D converges to the
AWGN case as well.

The ML estimator for location estimation in the presence
of fading is denoted as

ẑ = argmax
z

M∏
i=1

fτ̂i(τ̂i|z). (18)

Substituting (5) into (18), we have

ẑ = argmin
z

M∑
i=1

log

[
1

2σ2
T

(
τ̂i −

di
c

)2

+m

]
, (19)

where di = ||pi − z||2.
In the absence of fading, the ML estimator which is de-

rived in [4] is

ẑ = argmin
z

M∑
i=1

(
τ̂i −

di
c

)2

. (20)

By comparing (19) and (20) one can see that the ML estima-
tor in the presence of fading does require the knowledge of
m, and σT , whereas the ML estimator in the absence of fad-
ing does not require the knowledge of σT . In Section 3 we
illustrate that it is more appropriate to use (19) compared to
(20) in the presence of fading.

2.3. Unknown fading distribution

In the previous section we assumed the fading is Nakagami
distributed and the effect of fading is averaged out. How-
ever, in some cases the prior distribution of the fading is un-
known to the estimator. In such cases, the modified CRLB
(MCRLB), which is

MCRLB(z) =

[
ET,h

{[(
∂lnf(T|h, z)

∂z

)2
]}]−1

(21)

can be applied [13].
When computing the CRLB in Section 2.2, the FIM uses

the distribution in (5). For the MCRLB, from the PDF in (2),
the FI can be calculated for the 1-D case as

Fz =
(
c2σ2

T

)−1
M∑
i=1

Ehi

(
|hi|2

)
. (22)

Therefore, (21) can be calculated as

MCRLB1-D(z) = c2σ2
T

[
M∑
i=1

Ehi

(
|hi|2

)]−1

. (23)
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Fig. 2. CRLB comparison in a 1m× 1m square with σT = 1
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Fig. 3. The ratio k in (12) versus the Nakagami m parameter.

From (23) one can see that although the fading distribution
is unknown at the estimator, the MCRLB of the localization
error can be calculated if the second moment of fading is
known. since Ehi

(
|hi|2

)
= 1 , then (23) can be simplified

as MCRLB1-D(z) = c2σ2
T /M , and the MCRLB for the local-

ization error equals the AWGN case in [4]. Since the MCRLB
is known to be a lower bound on the CRLB in (11), we can
conclude that the presence of fading will always degrade per-
formance of any fading distribution. For the MCRLB in 2-
D, the derivation is very similar as 1-D, and it turns out the
MCRLB in 2-D is the same as the 2-D AWGN case as well.
The details are omitted for brevity.

3. NUMERICAL RESULTS

Consider a sensor network with four anchors in the corner
of a square, and one node within the square. The fading is
Rayleigh distributed. In Figure 2 the area of the square is
1m × 1m. We observe that the loss due to fading is about 2.5
everywhere within the square.

Figure 3 shows the loss due to fading as a function of the
Nakagami m parameter. As expected, the loss decreases with
increasing m and converges to 1.

In Figure 4 we consider a 1m × 1m square, 4 anchors
are in the corners, and 1 node is in the middle of the square.
We compare estimators (19) and (20) both in the presence of
fading by plotting the normalized SNR (with respect to c2) vs.
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Fig. 4. ML estimators comparison.
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Fig. 5. CRLB comparison when SNR is large.

the variance of localization error in Figure 4. We observe that
the fading ML estimator (19) performs better than the AWGN
ML estimator (20) in the presence of fading.

Figure 5 shows the CRLB comparison in 1-D between the
AWGN case and the presence of Rayleigh fading. From the
fading one can see that in the high SNR regime, to maintain
the same variance of localization error, CRLB in the pres-
ence of Rayleigh fading needs about 5dB more power than
the AWGN case.

4. CONCLUSIONS

In this paper, we derived CRLBs in the presence of fading
under TOA measurements. Fading coefficients are first con-
sidered as random parameters with a prior Nakagami distri-
bution, the CRLB is derived by averaging out the effect of
fading. Also, by comparing the CRLB in the presence of
Rayleigh fading and the AWGN case, it is shown in both 1-
D and 2-D that an SNR of about 5dB is present. when the
variance of noise is close to 0 the SNR loses around 5dB due
to fading. Also, the CRLB in the presence of fading con-
verges to the AWGN case as the fading parameter increases.
Meanwhile, the ML estimator in the presence of fading is de-
rived, and is different than the ML estimator for the AWGN
case. Secondly, the MCRLB is derived when the prior fading
distribution is not known at the estimator. In this case, the
MCRLB is the same as the CRLB in the absence of fading,
proving that fading always leads to loss in performance.
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