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ABSTRACT
We consider the problem of detection and localization for an un-
known emitter in a synchronized wireless sensor network. The de-
tection is investigated by the classical binary Bayesian hypothesis
testing using TDOA measurements and the localization is tackled in
the framework of support detection with the joint TDOA informa-
tion and sparsity of the receiving signal. We derive the decision rule
with TDOA measurements by multiple synchronized sensor nodes
and simultaneously the decision threshold under the given constant
false alarm (CFAR) probability according to the Neyman-Pearson
principle. In the framework of support detection, we propose that
the TDOA-based localization and detection could be performed in
the manner similar to radar by using range cells. Simulation results
show that both the proposed methods are effective in the detection
and localization of an unknown emitter.

Index Terms— Detection and Localization, TDOA, support de-
tection, sensor network

1. INTRODUCTION

It is known that detection, localization, and tracking (DLT) of an un-
known emitter is one of the important tasks in civilian and military
applications. With multiple sensor nodes synchronized in a wireless
sensor network (WSN), the DLT can be respectively performed by
employing either the peak amplitude of the multiple pairwise cross-
correlation of the received signals at multiple sensor nodes or their
corresponding time difference of arrival (TDOA) [1] and frequency
difference of arrival (FDOA), or both.

In order to reduce excessive data transmission among the asso-
ciated nodes and its resulted additional delay, distributed detection
are often considered [2, 3]. It has been shown that when the signals
received by the associated sensor nodes are correlated, the local op-
timal decision rules [3] for each sensor node do not have the explicit
form comparing with that of the likelihood ratio threshold when the
received signals are independent, and solving the local optimal deci-
sion rules becomes an NP-complete problem [2]. However, for the
case of detecting and localizing an unknown emitter using TDOA
measurements, it is necessary to perform pairwise crosscorrelation
among the synchronized sensor nodes, which at least requires one
sensor node, or called a cluster head to broadcast its received sig-
nals to its neighboring ones. The detection and localization can be
performed at the cluster head according to the TDOA measurements
fed back from these neighboring nodes.

Recently, sparse signal processing shares its light in many appli-
cation areas [4][5]. With respect to the considerable area surveyed
by a wireless sensor network, unknown emitters are always sparse in
space. This sparsity can be exploited for detection and localization
under the framework of support detection in sparse signal processing
[4][5].

In this paper, we focus on the detection and localization using
TDOA measurements and sparsity of the received signals and pro-
pose the TDOA-based detection and localization under the frame-
work of support detection.

2. PROBLEM FORMULATION

2.1. Signal Model

Consider a scenario whereby a network of passive sensors collabo-
rate to detect an unknown emitter. The locations of the sensor nodes
are assumed to be known. In the ensuing mathematical formulation,
we adopt the following notations: tj is the signal propagation delay
from the emitter to the jth sensor node; u ∈ R3 is the location of the
unknown emitter to be detected; M is the number of sensor nodes;
sj is the location of jth sensor node; c is the speed of light. Assum-
ing line-of-sight signal propagation, the TDOA measurements can
be obtained by pairwise crosscorrelation of the received signals at
multiple synchronized sensor nodes and is denoted by

τij =
1

c
‖u − si‖ − 1

c
‖u− sj‖+ nij , i 6= j (1)

where i, j = 1, . . . ,M , and nij is the measurement noise. In the
case of pairwise crosscorrelation, the independent TDOA measure-
ments are often denoted by

τ = [τ21, τ31, . . . , τM1]
T (2)

where the first node is considered as the reference one, and the cor-
responding measurement noise vector is denoted by

n = [n21, . . . , nM1]
T (3)

where n is often assumed to obey Gaussian distribution with zero
mean and the covariance matrix Q [6].
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2.2. Detection Using TDOA Measurements

The binary hypothesis testing problem [3] using TDOA measure-
ments can be represented by

H0 : τ = n,

H1 : τ = τ̃ +n (4)

where

τ̃ =











1
c
‖u− s2‖ − 1

c
‖u− s1‖

1
c
‖u− s3‖ − 1

c
‖u− s1‖

...
1
c
‖u− sM‖ − 1

c
‖u− s1‖











. (5)

It is evident to see that

p(τ |H0) ∼ N (0,Q),

p(τ |H1) ∼ N (τ̃ ,Q). (6)

The corresponding likelihood ratio test (LRT) is denoted by

l(τ ) =
p(τ |H1)

p(τ |H0)

H1

>

<
H0

η (7)

where the threshold η is often chosen according to the specified false
alarm probability

PF = P (H1|H0) =

∫

Z1

p(τ |H0)dτ . (8)

Here Z1 denotes the decision region corresponding to hypothesis
H1. Therefore, the probability of detection can be obtained by

PD = P (H1|H1) =

∫

Z1

p(τ |H1)dτ . (9)

According to the distribution assumption for the measurement
noise vector in (3), we have

l(τ ) =
p(τ |H1)

p(τ |H0)

= exp

[

τTQ−1τ − (τ − τ̃ )TQ−1(τ − τ̃)

2

]

= exp

[

2τTQ−1τ̃ − τ̃TQ−1τ̃

2

]

. (10)

This means that (7) can be equivalently written as

τ̃
T
Q

−1
τ̃ − 2τT

Q
−1

τ̃ + 2 log η

H1

6

>
H0

0. (11)

Let λ = 2 log η, (11) can be denoted by

[

τ̃

1

]T [

Q−1 −Q−1τ

−τTQ−1 λ

] [

τ̃

1

] H1

6

>
H0

0. (12)

Since τ̃ is the function of u, the intuitive and effective decision rule
for arbitrary location u of the unknown emitter can be denoted by

[

Q−1 −Q−1τ

−τTQ−1 λ

] H1

6

>
H0

0. (13)

By using Schur complement, we have
[

Q−1 −Q−1τ

−τTQ−1 λ

]

> 0 ⇐⇒ τ
T
Q

−1
τ < λ (14)

to decide that H0 is true, i.e., the target is absent. According to (14),
we see that the decision region for H0 is determined by τTQ−1τ <
λ. Since the detection we addressed is the binary hypothesis testing
problem, we can choose τTQ−1τ ≥ λ as the decision region for
H1.

3. THRESHOLD FOR THE NEYMAN-PEARSON TEST

As we know, the a priori probabilities for H0 and H1 are usually un-
known, we adopt the Neyman-Pearson test for the detection, where
the desired threshold λ is chosen under the given constant false alarm
probability (CFAR):

PF = P (H1|H0) =

∫

Z1

p(τ |H0)dτ

=

∫

τT Q−1τ>λ

1

(2π)
M−1

2 |Q| 12
exp

[

−τTQ−1τ

2

]

dτ .

(15)

For simplicity and without loss of generality, we first consider M =
5. Let

y = Q
− 1

2 τ ,

we have

PF =P (H1|H0) = 1− P (H0|H0)

=1−
∫

τT Q−1τ<λ

1

(2π)
5−1

2 |Q| 12
exp

[

−τTQ−1τ

2

]

dτ

=1− 1

(2π)2

∫

yT y<λ

exp

[

−yTy

2

]

dy

=1− 1

(2π)2
×

∫

√
λ

−
√

λ

e−
y2
1
2

[

∫

y2
2
+y2

3
+y2

4
<λ−y2

1

e−
y2
2
+y2

3
+y2

4
2 dy4dy3dy2

]

dy1.

Using spherical coordinates notation, we can have
∫

y2
2
+y2

3
+y2

4
<λ−y2

1

e−
y2
2
+y2

3
+y2

4
2 dy4dy3dy2

=

∫ 2π

0

∫ π

0

∫

√
λ−y2

1

0

e−
r2

2 r2 sinϕdrdϕdθ

=2π ×
∫ π

0

sinϕdϕ

∫

√
λ−y2

1

0

r2e−
r2

2 dr

=4π ×
∫

√
λ−y2

1

0

r2e−
r2

2 dr,

such that

PF = 1− 4π

(2π)2

∫

√
λ

−
√

λ

e−
y2
1
2

∫

√
λ−y2

1

0

r2e−
r2

2 drdy1

= 1− 1

2π

∫

√
λ

−
√

λ

∫

√
λ−y2

1

−
√

λ−y2
1

r2e−
r2+y2

1
2 drdy1. (16)
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Similarly, let {

y1 = ρ cos φ

r = ρ sinφ

then we obtain

PF = 1− 1

2π

∫ 2π

0

∫

√
λ

0

ρ2 sin2 φe−
ρ2

2 ρdρdφ

= 1− 1

4π

∫ 2π

0

(1− cos 2φ)dφ

∫

√
λ

0

ρ3e−
ρ2

2 dρ

=
1

2
e−

λ
2 (λ+ 2). (17)

Using the similar derivation steps for the case of M = 5, we can
obtain the results for M = 6 and M = 7:

PF = 1− erf

(

√

λ

2

)

+

√

2

9π
e−

λ
2

(

(√
λ
)3

+ 3
√
λ

)

(18)

and
PF =

1

8
e−

λ
2 (λ2 + 4λ+ 8) (19)

respectively, where erf (x) is the error function defined by erf (x) =
∫ x

0
e−t2dt.
The desired threshold for the Neyman-Pearson test can thus be

obtained by solving (17), or (18), or (19).

4. DETECTION AND LOCALIZATION USING TDOA
MEASUREMENTS AND SPARSITY

From the point of view of surveillance, we care not only the pres-
ence/absence of the unknown emitter, but also the location of the
emitter in the interested (concerned) area if it was present. Accord-
ing to the measurement model (1), the maximum likelihood local-
ization (MLL) for unknown emitter is straightforwardly denoted by

min
u

M
∑

i=2

(

1

c
||u− si|| − 1

c
||u − s1|| − τi1

)2

(20)

which can be equivalently written as

min
u,t

M
∑

i=2

(ti − t1 − τi1)
2

subject to
1

c
||u − si|| = ti, i = 1, . . . ,M. (21)

Since the location of the unknown emitter is a (sparse) point in the
interested area, it is natural to consider dividing the interested area
into a number of small space cells. For instance, we divide the inter-
ested area into H×L×W cubic cells [H is the number in height, L
is the number in length, and W is the number in width] and denote
ui ∈ R3 as the center location of the ith cell, the MLL (21) can be
reformulated under the framework of support detection [5]

min
x,t

M
∑

i=2

(ti − t1 − τi1)
2 + λ||x||1

subject to
1

c
||Ux− si|| = ti,

x ≥ 0, i = 1, . . . ,M (22)

where U = [u1, . . . ,uHLW ] ∈ R3×HLW , x ∈ RHLW×1 is a
sparse vector with very few elements (or one element) greater than

zero, and λ (> 0) is a proper parameter to keep the sparsity of x.
It is seen that (22) is a non-linear and nonconvex optimization prob-
lem. By relaxing the equality constraints in (22) to inequality ones,
the optimization problem (22) can be cast into the following convex
programming:

min
x,t

M
∑

i=2

(ti − t1 − τi1)
2 + λ||x||1 + δ

M
∑

i=1

t2i

subject to
1

c
||Ux− si|| ≤ ti,

x ≥ 0, i = 1, . . . ,M (23)

where δ is a positive constant for penalization ranging from 10−8 to
10−4. (23) can be solved by SeDuMi, an efficient solver for convex
optimization problems. By solving (23), we have the solution x and
then the emitter location estimate û = Ux, which can be refined by
applying any standard nonlinear optimization routine to (20).

5. NUMERICAL RESULTS

We here conduct three computer simulations to state the the receiver
operating characteristics (ROC) of the abovementioned detection
methods. In the first simulation, we consider the impact of the
number of employed sensor nodes for detection on the ROC perfor-
mance, where detection is performed by the decision rule of (13)
with the threshold (17), (18), and (19), respectively. The second
simulation focuses on the ROC for the cases where the unknown
emitter locates in either the near field, or far field of the interested
area, or outside the area, where M = 5 nodes are employed, fol-
lowing the decision rule of (13) with the threshold (17). Moreover,
the results by solving (23) are involved in the detection when H1

is declared to be true. To make tradeoff between the performance
and the energy used for data transmission, in the third simulation
we evaluate impact of the length of the received signal samples for
cross-correlation on the ROC performance, where the process of
decision is the same as that in the second simulation. Without loss
of generality, we assume that the unknown emitter transmits QPSK
signals and its signal bandwidth is 10MHz. For all the simulations,
8×107 Monte Carlo runs are performed to evaluate the ROC perfor-
mance for each case. In all the simulations, even neighboring nodes
or a portion of them are involved in the detection process, whose
locations are listed in Table I.

Table 1. Locations of the Sensor Nodes

node no. 1 2 3 4 5 6 7
x 0 879 0 -990 1023 -1327 0
y 0 0 1115 -1220 887 0 -925
z 5 15 20 10 4 13 18

Simulation #1: In this simulation, the location of the unknown
emitter and the covariance matrix of the TDOA measurement noise
[6] are respectively set to u0 = [700, 800, 750]T and

Q = σ2
n











1 1/2 . . . 1/2
1/2 1 . . . 1/2

...
...

. . .
...

1/2 1/2 . . . 1











(M−1)×(M−1)

where σn = 3 × 10−8 (s). According to the definition for PF and
PD by (8) and (9), the ROC curves are plotted in Fig.1 for the cases
where the first M = 4, 5, 6, 7 sensor nodes listed in Table I are re-
spectively employed for detection. For comparison, the correspond-
ing theoretical ROC curves without marks are plotted in the figure.
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From Fig.1, we see that more sensor nodes employed result in more
performance improvement.

Simulation #2: In this simulation, we consider the effect of
the propagation loss on performance. We denote di as the dis-
tance between i-th sensor and the emitter. For simplicity and
without loss of generality, we set the unknown emitter location
to u0 = [700, 800, 750]T for near-filed case and consider the
d0 =‖ [700, 800, 750]T − [0, 0, 5]T ‖ as the reference, the received
signal to noise ratio of the i-th sensor is scaled by d20/d

2
i . The TDOA

measurements are obtained by performing crosscorrelation between
the 1st sensor and the i-th (i = 2, . . . ,M ) sensor, where the sam-
pling frequency is set to 100MHz and 200 received signal samples
at the cluster head are broadcast. Furthermore, we set the unknown
emitter location to u0 = [1600, 1700, 1500]T for the far-field case,
while u0 = [4800, 4800, 4800]T outside the interested area. The
interested area is assumed with the height from 100m to 4000m,
the length from −4000m to 4000m, and the width from −4000m
to 4000m. We employ M = 5 sensor nodes for detection, and the
SNR of the received signal at the reference sensor node located at
[0, 0, 5]T is considered as −1db for the near-field case. In Fig.2, we
plotted the ROC curves for these three cases. From the figure, it is
seen that the detection performance decreases significantly with the
increase of the distance between the sensors and the emitter.

Simulation #3: In this simulation, we consider the effect of three
different numbers of received signal samples on ROC performance,
which are broadcast to the neighboring nodes. These numbers of
samples are corresponding to the same time duration. This is to say,
the received signals are sampled by different sampling frequency.
Here we adopt 100, 200, and 400 samples corresponding to sampling
frequency 50MHz, 100MHz, and 200MHz, respectively. The loca-
tion of the unknown emitter is assumed as u0 = [700, 800, 750]T ,
and M = 5 sensor nodes are employed. The SNR of the received
signal at the cluster head node (located at [0, 0, 5]T ) is considered
as 0db. The corresponding ROC curves are plotted in Fig.3. From
the figure, we see that the more samples in the same duration are
broadcast, i.e., the higher sampling frequency is used, the better the
performance will be. The tradeoff on the number of the samples will
be made according to the practical performance requirements.
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