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ABSTRACT
This paper presents the soft-input soft-output (SISO) linear

programming (LP) decoder. It is shown that the soft infor-

mation gleaned from a pseudo-codeword solution to the LP

optimization is not only useful, but that it can be superior to

the soft information output from a SISO belief propagation

(BP) decoder in certain situations.

Index Terms— LP decoding, turbo-equalization, LDPC,

linear programming, short block length codes

1. INTRODUCTION

Efficiently and accurately communicating short packets of

data through a frequency selective channel is a challenge. In

the large block length regime, capacity may be approached by

protecting the data with a LDPC code and receiving it with a

turbo equalizer that employs a MMSE equalizer and a belief

propagation (BP) decoder [1]. However, in the short block

length regime, the performance of the BP decoder is difficult

to ensure analytically due to its sensitivity to short cycles [2].

Linear programming (LP) decoders have been proposed

as an alternative to BP decoders. These decoders relax the

decoding problem into that of a linear program. LP decoders

have a performance that is competitive with BP decoders

[3] and a similar complexity [4]. They have the advantage

of proven performance bounds as well as a guarantee that

any integer-valued output is the ML codeword [5]. Recently,

applying LP decoding to an ISI channel has been explored.

It was shown that joint equalization and decoding may be

accomplished within the LP framework by formulating the

equalization task as a linear program [6, 7]. A joint LP equal-

ization and decoding scheme similar to a turbo equalizer

using a BCJR equalizer with a LP decoder was presented,

which demonstrates that joint channel equalization and LP

decoding can be achieved with a complexity similar to a turbo

equalizer [8].

This work used the Extreme Science and Engineering Discovery Envi-

ronment (XSEDE), which is supported by NSF grant number OCI-1053575.

This paper introduces the SISO LP decoder. It is demon-

strated that valuable soft information may be gleaned from

the codeword or pseudo-codeword output from the LP de-

coder. The SISO LP decoder enables joint equalization and

decoding using an arbitrary equalizer within a turbo equal-

izer setting. The ability to separate the equalization from the

LP decoding task is beneficial, for example, when a short data

packet must be transmitted over a long ISI channel. In this sit-

uation, a MMSE-based turbo equalizer may be preferred due

to complexity issues, and a LP decoder may be preferred due

to short block length issues. The soft output from the SISO

LP decoder is also suitable for use by the channel estimator

and in other applications where a priori information about the

transmitted symbols is useful.

2. SYSTEM DESCRIPTION

This section describes the structure of the communication sys-

tem that is depicted in Figure 1.
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Fig. 1. Communication system model.

A block of bits b are protected with a LDPC code to create

c and then mapped to N BPSK symbols x. These symbols are

transmitted through a LTI, frequency selective channel with

channel response h. The received signal y is assumed to be

described by Equation 1. The parameter L is the length of

the discrete channel response. The noise ω is AWGN with

variance σ2.

yn =

L−1∑
i=0

hixn−i + ωn (1)

The signal is received by a turbo equalizer that is com-

posed of a SISO MMSE equalizer and a SISO LP decoder.
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The decoder is discussed in detail in Section 4. At turbo it-

eration k, the equalizer takes as inputs the signal y and soft

symbols x̃(k). The soft symbols are distributions representing

the knowledge the receiver has about the transmitted symbols.

As is typical [1], they are modeled by the Gaussian distribu-

tion described by Equation 2. The parameter μ(k) is the mean

of the soft estimate of x, and V(k) is its covariance matrix.

x̃(k) ∼ N
(
μ(k),V(k)

)
(2)

The MMSE equalizer outputs soft symbols x̂ that are cal-

culated in Equation 3. The vector hi is h shifted by i time

steps and truncated to the first N taps. The matrix H is con-

structed by setting its ith row equal to hi.

x̂
(k)
i = hT

i

(
σ2I + HV(k)

i HT
)−1 (

y −Hμ
(k)
i

)
(3)

In order to ensure that the equalizer only outputs extrinsic

information, x̃
(k−1)
i is not involved in calculating x̂

(k)
i [9].

To ensure an extrinsic output, the vector μ
(k)
i is equal to μ(k)

except for the ith entry, which equals 0. Also, V(k)
i is equal to

V(k) with its ith row and ith column replaced by zeros except

entry (i, i), which is replaced by 1. Section 4 describes a

method to reduce the complexity of the calculation of x̂(k).

It is convenient to transform the output into a log likeli-

hood ratio (LLR), denoted by γ
(k)
i . Equation 4 describes the

LLR of a BPSK symbol output from the equalizer.

γ
(k)
i =

2x̂
(k)
i

1− hT
i

(
σ2I + HV(k)

i HT
)−1

hi

(4)

3. LP DECODING

LP decoding transforms the problem of finding the maximum

likelihood (ML) estimate of x given the code structure into

a constrained linear optimization problem. In order to de-

scribe the ith symbol estimate x̌i with only positive variables

so that the problem may be formulated as a linear program,

define a variable representing the estimate of the ith code bit

či and a second variable č−i = 1− či. Then x̌i equals či− č−i .

The solution to the LP optimization is constrained to lie

within a polytope defined by a relaxation of the parity check

constraints that define the structure of the code. The mth par-

ity constraint may require that the binary sum of the M bits

in the set Sm be equal to zero, which is equivalent to requir-

ing that the sum of the M bits in the set Sm be even. In LP

decoding, the parity check constraint is relaxed to Equation 5.

0 ≤∑
i∈Sm

či ≤M −mod2{M}
mod2{M} ≤∑

i∈Sm
č−i ≤M

(5)

The requirement that the bits are either 0 or 1 is relaxed to

the constraint described in Equation 6, and the construction

of xi is relaxed to Equation 7.

0 ≤ či ≤ 1
0 ≤ č−i ≤ 1

(6)

−1 ≤ či − č−i ≤ 1 (7)

The objective function is equal to the sum of the sym-

bol estimates weighted by their log likelihood ratios γ. For

BPSK, the objective function is given by Equation 8.

f = −γT
(
č− č−

)
(8)

The LP optimization converges to constraint vertex x̌.

This vertex may be the ML codeword or a pseudo-codeword,

which is a fractional solution to the linear programming prob-

lem. It will be shown in Section 6 that pseudo-codewords

contain valuable information that may be used to improve the

performance of the receiver. A novel method for extracting

soft information from x̌ is presented in the next section.

4. SISO LP DECODING

The SISO LP decoder extracts soft information x̃(k) from the

solution x̌(k) to the LP problem. It is imagined that x̌(k) is

an observation of x̄, the mean of the “true” soft output given

the input, that is quantized to the nearest constraint polytope

vertex. The additional uncertainty that this quantization in-

troduces is accounted for in the covariance of x̃(k).

Since x̄(k) is not directly observed, it may be modeled as

a uniform distribution over a region determined by the code

polytope. This region is a pyramid oriented along the line

between the origin and x̌(k) and bounded by the constraint

−1 ≤ x ≤ 1. It may be bounded further by observing that

the turbo equalizer is expected to decrease the entropy h̄ of its

output after each turbo iteration as it improves its estimate of

x. A scalar α(k) is found so that the entropy associated with

the soft symbol α(k)x̌(k) is equal to the entropy associated

with x̃(k−1). The x̄(k) region is the section of the pyramid

that is outside a radius equal to α times the magnitude of x̌(k).

An example of the x̄(k) region for a trivial code that en-

codes one bit into two code bits is depicted in Figure 2. The

transmitted symbol x corresponds to the zero codeword. The

points (−1,−1) and (1,1) are valid codewords, and there are

six additional pseudo-codewords in the polytope. The extrin-

sic decision x̌(k) is constructed from the ith element of x̌
(k)
i

and the jth element of x̌
(k)
j . The x̄(k) region is bounded by

the dashed purple circle, lines connecting the origin to the

points midway between x̌(k) and its neighbors, and xj = −1.
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(a) The uniform x̄(k) distribution

depicted as a shaded region.
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(b) The Gaussian approximation to

the x̄(k) distribution.

Fig. 2. An example of a SISO LP decoding scenario

For convenience, a Gaussian distribution capturing the

aggregate properties of the code polytope is used to approxi-

mate the uniform distribution over the x̄(k) region. The mean

μ(k) of the distribution is given by Equation 9. As depicted in

Figure 2(b), the variance σ
(k)
L

2
of x̄(k) along the x̌(k) direc-

tion is a function of α(k), and the variance σ2
W of x̄(k) along

every direction orthogonal to x̌(k) is a constant parameter

that is related to the distance between neighboring vertices on

the constraint polytope.

As is typical, the soft output x̃(k) is modeled as a Gaussian

distribution [1]. Its mean is equal to μ(k) and its covariance

is given by Equation 10. Define δi to be a vector of all zeros

except for the ith element which is a one. Define A(k) to be

a rotation matrix that rotates δ0 into the direction of x̌(k).

Define Σ(k) to be the diagonal matrix with its jth element

equal to 1 − |μ(k)
j |2, which would describe the covariance

matrix of x̃(k) if this were a MAP decoder [1]. A second

term is added to V(k) to represent the quantization effect of

the polytope of the code.

μ(k) =
1 + α(k)

2
x̌(k) (9)

V(k) = Σ(k) + A(k)

⎡
⎢⎢⎢⎣

σ
(k)
L

2
0 0

0 σ2
W 0

. . .

0 0 σ2
W

⎤
⎥⎥⎥⎦A(k)T (10)

As with the SISO equalizer in Section 2, the SISO LP

decoder must be carefully constructed to output only extrin-

sic information. This may be accomplished by solving the

optimization problem for each code bit i with the ith element

of the LLR vector set to 0. Define the vector x̌
(k)
i to be the

solution to the optimization problem at turbo iteration k with

γi = 0. The extrinsic solution x̌(k) is constructed element-

wise by taking the ith element of x̌
(k)
i to be the ith element of

x̌(k). Since the optimization may be implemented with linear

complexity in N , and the optimization is performed N times

per turbo iteration, the SISO LP decoder presented here has

quadratic complexity.

If σ2
W may be approximated as zero, then V(k)

i may

be described by Equation 11, which allows the inverse of(
σ2I + HV(k)

i HT
)

in the MMSE solution to be computed

efficiently. The superscripts indicating the turbo iteration are

left off the following equations.

Vi =Σ+ σ2
LAδ0δ

T
0 AT +

(
|μi|2 + σ2

Lδ
T
i Aδ0δ

T
0 AT δi

)
δiδ

T
i

−σ2
Lδiδ

T
i Aδ0δ

T
0 AT − σ2

LAδ0δ
T
0 AT δiδ

T
i (11)

Define the following matrices:

X := σ2I + HΣHT + σ2
LHAδ0δ

T
0 AT HT

Bi := X +
(
|μi|2 + σ2

Lδ
T
i Aδ0δ

T
0 AT δi

)
hih

T
i

Ci := Bi − σ2
Lhiδ

T
i Aδ0δ

T
0 AT HT

Si := σ2I + HV(k)
i HT = Ci − σ2

LHAδ0δ
T
0 AT δih

T
i

Then the inverse of S(k)
i may be computed efficiently by

applying the Woodbury identity three times. The advantage

of doing this is that the MMSE equalizer is only required to

calculate one matrix inverse when computing x̂(k).

B−1
i = X−1 − X−1hih

T
i X−1

hT
i X−1hi +

(
|μi|2 + σ2

Lδ
T
i Aδ0δ

T
0 AT δi

)−1

C−1
i = B−1

i − B−1
i hiδ

T
i Aδ0δ

T
0 AT HT B−1

i

δTi Aδ0δ
T
0 AT HT B−1

i hi − σ−2
L

S−1
i = C−1

i − C−1
i HAδ0δ

T
0 AT δih

T
i C−1

i

hT
i C−1

i HAδ0δ
T
0 AT δi − σ−2

L

(12)

Input: LLRs γ(k) describing the bit probabilities.

Solve the LP problem for each x̌
(k)
i with the ith element of

γ(k) set to zero.

Construct x̌(k) by setting its ith element equal to the ith
element of x̌

(k)
i .

Find α(k) such that the entropy h̄{α(k)x̌(k)} = h̄{x̃(k−1)}
Calculate μ(k) = 1+α(k)

2 x̌(k).

Calculate V(k) using Equation 10.

Output: the soft symbols x̃(k) ∼ N
(
μ(k),V(k)

)
.

Table 1. The SISO LP decoding algorithm.
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5. SIMULATION SETUP

A turbo equalizer with a SISO LP decoder and a turbo equal-

izer with a SISO BP decoder were simulated. The channel

was the Proakis Channel B given by h = [0.407, 0.815, 0.407]
with real-valued AWGN. The transmitted symbols were

BPSK. The turbo equalizer performed up to ten turbo it-

erations, as going beyond ten iterations did not significantly

affect the performance of the system. The simulations were

run until 100 block errors were encountered.

A rate 1
3 LDPC code with a block length of 96 code

bits was used. This code was taken from [10], which is a

repository of codes designed to have good minimum distance

properties. The BP decoder ran a maximum of 100 message

passing iterations per turbo iteration. The constraint polytope

used by the LP decoder was tightened by adding redundant

constraints, which were created by taking a linear combina-

tion of two constraints that were selected at random. The

polytope was tightened until the density of the polytope ver-

tices was sufficient to calculate Equation 3 more efficiently

using Equation 12. The parameters describing the x̄(k) dis-

tribution were determined experimentally. The parameter

σ
(k)
L = 1

12

(
1− α(k)

)
and the parameter σW = 0.

6. SIMULATION RESULTS

The BER versus SNR curves for the turbo equalizer using

the SISO LP decoder are shown in Figure 3. Each curve

represents the performance of the system after the specified

number of turbo iterations. Iteration 0 represents the initial

pass of the equalizer and decoder. Without turbo equaliza-

tion, this system requires 37 dB of SNR to achieve a BER of

10−4. After ten iterations of the turbo equalizer, the required

SNR to achieve a BER of 10−4 is reduced by 25 dB. Figure 4

compares the BER performance after ten iterations of a turbo

equalizer using a SISO LP decoder with one using a SISO BP

decoder. It can be seen that the system with the LP decoder

outperforms the system with the BP decoder when the BER

is required to be less than 10−6.

7. CONCLUSION

The SISO linear programming decoder was introduced. It

was demonstrated that a turbo equalizer using a SISO LP

decoder can outperform one using a SISO BP decoder given

a short block length LDPC code. The SISO LP decoder is

superior in this situation, because it does not suffer from con-

vergence issues the BP decoder encounters that arise from

short cycles inherent in short block length codes. An efficient

SISO MMSE equalizer that can handle the correlated soft

symbols output from a SISO LP decoder was also discussed.
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Fig. 3. The performance of a turbo equalizer using a SISO

LP decoder to decode a rate 1
3 LDPC code after a specified

number of turbo iterations.
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Fig. 4. The performance after ten iterations of a turbo equal-

izer using a SISO LP decoder compared to the performance

of a turbo equalizer using a SISO BP decoder. Both turbo

equalizers use the same MMSE equalizer and LDPC code.

The receiver presented in this paper is a proof-of-concept

showing that a SISO LP decoder is a promising potential so-

lution to the problem of approaching the capacity of an ISI

channel with a short data transmission. Its performance may

be improved by more accurately modeling the quantization

depicted in Figure 2. It is left to future work to explore the

performance of a SISO LP decoder given a long code block.

Given prior work on LP decoders, it is suspected that the SISO

LP decoder has an application in this regime when the bit er-

ror rate must be extremely low. To make it practical, the SISO

LP decoding problem must be reformulated to leverage the

structure of the problem in order to achieve a low complexity.
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