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ABSTRACT 

 

Network Coding is a promising approach to increase 

network throughput and robustness to facilitate high volume 

traffic. Performing network coding in dynamic network 

structures requires transmitting coding coefficients for 

information sinks to decode network coded packets. 

Compared to the packet sizes used in practical networks, the 

size of coefficient vectors can be significant. This paper 

exploits the properties of small and medium sized networks 

and proposes a novel approach to minimise the coefficient 

vector size of network coded packets. Simulation results 

exhibit better compression of coefficient vectors over 

existing algorithms for small and medium sized networks. 

 

Index Terms— Random Linear Network Coding, 

Coefficient Compression 

 

1. INTRODUCTION 

 

Due to increased throughput and enhanced robustness 

offered by network coding, it has become one of the 

prominent areas in networking research. Network coding 

extends information coding to intermediate nodes [1]. 

Information packets are treated as streams of symbols from 

a certain finite field. Network nodes combine packets over 

the considered finite field and send out the combination. 

Information sinks are required to possess the knowledge on 

how network coding is performed on the packets they 

receive, in order to decode the original information. This is 

not feasible in practical networks due to node failures, link 

failures, packet losses, packet jitter and network topology 

changes. Random linear network coding extends network 

coding to be used under dynamic network structures[2], [3]. 

This is performed by appending the coefficient vectors in 

front of the coded packets to provide information on how 

packets are coded. These coefficients are updated at each 

node where network coding is performed. Practical network 

coding splits the number of packets to be coded using 

random linear network coding in to fixed sized groups 

called generations [4]. The number of packets belonging to a 

generation is called the generation size. However, the 

approach of sending coefficient vectors comes at the cost of 

additional bandwidth. 

Consider a network coding scheme which uses a 

generation size of 100 and a Galois field   . This scheme 

requires coding vectors to accommodate 100 bytes per 

packet. Even considering a larger packet size of 1400 bytes, 

over 7% of payload data is required to transmit coefficient 

vectors. Furthermore, doubling the generation size or using 

a larger finite field of Galois field     results in doubling the 

coefficient vector size. 

As a solution, a method named Subspace coding is 

introduced in [5], which, does not require transmitting 

coefficient vectors. Subspace coding uses a particular 

subspace selected by the information source to convey 

information. Sinks can decode the coded information by 

deciding the particular subspace. However, for larger packet 

lengths, the information rate achieved by subspace coding 

becomes the same as sending coefficient vectors [6]. 

Furthermore, designing subspace codes also becomes 

challenging for a multi-source networks [7]. Another 

approach to compress network coding vectors is proposed in 

[7]. The authors argue that the packets received at 

information sinks may only contain linear combinations of 

several source packets which are only a fraction of the 

number of source packets. Therefore, the number of 

coefficient vectors transmitted is limited by limiting the 

number of packets that are allowed to be combined in a 

network. However, depending on the network structure and 

the generation size, the difference between the number of 

source packets included in a linear combination received by 

a sink and the number of source packets, may be narrow. 

This will significantly reduce the gain achieved by the 

compressed coding vectors algorithm proposed in [7]. In 

addition, limiting the number of packets being combined 

may decrease the probability of a redundant combination 

being useful for multiple sinks in a network with packet 

losses. 

In response, this paper presents a novel approach to 

minimise the size of coefficient vectors in a network coded 

packet for small to medium sized networks such as Abiline 

[8], JANET [9] and UUNET UK [10]. This type of networks 

is used as backbone networks, connecting a number of core 

network nodes, to carry high volume traffic. In the proposed 
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approach, network coding is performed in the information 

source using a set of coefficient vectors which are also 

known to information sinks. The matrix containing the 

coefficient vectors is identified by the term coefficient 

matrix. Instead of sending the coefficient vectors itself, 

coefficient information or information indicating which 

row/rows of the coefficient matrix are used to generate the 

particular linear combination, is sent along with the coded 

packet. Coefficient information is further compressed using 

a lossless compression scheme before transmitting. 

Intermediate nodes decompress the compressed coefficient 

information, combine received packet combinations, update 

and compress coefficient information and send the new 

packet combination along with updated coefficient 

information to the next hops. 

The rest of the paper is organised as follows. Section 2 

elaborates the novel approach presented in this paper. 

Section 3 presents and discusses the simulation results 

comparing the proposed method to state-of-the-art. Section 

4 concludes the paper. 

 

2. METHODOLOGY 

 

2.1. Information Source 

 

The source selects   number of packets            , 
where, each packet is a     vector of elements from a 

Galois field   , where,   is the field size. These   number 

of packets belong to the generation  . Using an     

coefficient matrix      , where, each coefficient is also a 

non-zero element from the same Galois field   , the source 

combines   packets to generate   linear combinations 
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The coefficient matrix is the     portion of a larger 

coefficient matrix with elements of the Galois field   . This 

matrix is identified as the super coefficient matrix and is 

known to all network sources and sinks. The super 

coefficient matrix is generated in a way such that the rank of 

the     portion is  . This offers the flexibility to change 

    based on the network condition.     number of 

redundant combinations will be transmitted by the source 

per each generation. The super coefficient matrix consists of 

non-zero elements to increase the probability of a redundant 

combination being useful for multiple sinks in a network 

with packet losses. 

In conventional random linear network coding, the 

coefficients that are used to generate the particular 

combination will also be sent along with the packet. For 

instance, the combination    is transmitted as, 
[                ] 

Since coefficients are selected from a Galois field   , each 

coefficient will accommodate   number of bits. However, in 

the proposed approach, instead of appending the coefficient 

vectors,   number of bits per coefficient are used to indicate 

which row/rows of the coefficient matrix are used to 

generate the particular combination i.e., coefficient 

information. Thus, the combination    with coefficient 

information is represented in the form of, 

[                ] 
For small to medium sized networks, similar to the ones 

specifically concentrated in this paper, a value of      

number of bits per row of the coefficient matrix will be 

sufficient to represent coefficient information without 

affecting the decoding rate. This will result in a       ⁄  

times compression of the coefficient vectors. Furthermore, 

consider the argument stated in [7], which states if packets 

received at information sinks may only contain linear 

combinations of several source packets which are only a 

fraction of the number of source packets. This argument is 

well suited for small and medium sized networks considered 

in this paper. In this case, it is understood that majority of 

the elements in the coefficient information will be zero. In 

such cases, coefficient information can be compressed using 

a lossless compression algorithm. A simple compression 

algorithm that can be used is to indicate the position of non-

zero elements and their values. The position of a non-zero 

element can be indicated using ⌈
                     

      ⁄ ⌉ 

number of bits and the value (representing         is 

sufficient since only non-zero elements are considered) can 

be represented by   number of bits. However, depending on 

the coefficient information, a more suitable lossless 

compression algorithm can be selected out of several 

suitable lossless algorithms, such as Huffman coding, 

Golomb coding, arithmetic coding, etc. if necessary. If 

compression requires sending more bits than it would 

require to send the uncompressed coefficient information, 

the smaller of either the compressed or uncompressed 

coefficient information can be sent. 

First   bits of the stream are used to indicate the 

compression algorithm used. The value of   depends on the 

number of compression algorithms considered by network 

nodes. These    bits are identified as the compression 

method identification flag. If no compression is performed, 

the compression method identification flag is set to null. 

 

2.2. Intermediate Nodes 

 

When an intermediate node receives a single combination 

from a generation, it will simply forward it to the next hops. 

If a node receives multiple combinations from the same 

generation, it adds the respective elements of the linear 

combinations over the considered finite field. If an 

intermediate node receives   combinations    
    

     
  , the 

output combination    is generated as, 
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Using the compression method identification flag, the 

particular algorithm used to compress the coefficient 

information can be identified and the compressed coefficient 

information is decompressed using the appropriate 

decompression algorithm. Then the coefficient information 

               is updated by separately adding the   

number of    bits belonging to each combination together. 

The updated coefficients are, 
[          ]      

   [    ]   
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Random linear network coding weighs received 

combinations using randomly generated coefficients from 

the Galois field    before combining. This can increase the 

probability of the output packet being useful (increase the 

rank of received coefficient vectors) for sinks. However,  

as the authors concentrate on less complicated small and 

medium sized networks, addition without weighing is 

performed. Albeit, it is still possible to weigh combinations 

using coefficient values less than  . The output combination 

with coefficient information will be in the form of, 

[                 
 ] 

The node selects the best algorithm to compress the 

coefficient information and compresses coefficient 

information. The compression method identification flag is 

updated accordingly. Then the compressed coefficient 

information along with the linear packet combination is 

transmitted to the next hops. 

 

2.3. Information Sinks 

 

An information sink first decompresses the compressed 

coefficient information. Using coefficient information, the 

sink can identify which of the coefficient vectors in the 

coefficient matrix have been used in generating each 

combination. The coefficient matrix is readily available in 

the sink. If the decompressed coefficient information of a 

packet received by an information sink is, 

[          ] 
the coefficient vector of the received packet is, 
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The sink collects   packet combinations   ̂   ̂    ̂  , with 

linearly independent coefficient vectors. Then the original 

packets are calculated as, 
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If no packet errors occur, the calculated information will be 

equal to the original packets. 

 

3. RESULTS AND DISCUSSION 

 

To analyse the gain achieved by the proposed algorithm in 

compressing coefficient vectors, simulations are carried out 

in a network topology similar to that of the Abiline network. 

Fig. 1. illustrates the simulated network topology. In the 

simulated network, the information source, node 0, 

multicasts information to information sinks located at node 

5, node 7 and node 9. Simulations are performed for 

different generation sizes at Galois fields    and    . Based 

on the network topology, a   value of   bits per coefficient 

is selected empirically to best suit the considered simulation 

scenario. Coefficient weighing is not performed. The 

compression algorithm explained in Section 2 is considered. 

Since only one compression algorithm is considered,     

bit is sufficient to represent the compression method 

identification flag.       redundant combinations are 

transmitted per each generation. Results are compared 

against classical random linear network coding and the 

compressed coefficient vector approach proposed in [7]. 

For the convenience of analysis, header size is assumed 

to be similar to the number of bytes required to transmit 

either coefficient vectors or coefficient information. Fig. 2.a. 

and Fig. 2.b. illustrates the header sizes in bytes of the 

proposed algorithm, the compressed coding vector approach 

and classical random linear network coding, for Galois 

fields    and    , respectively. It should be noted that 

simulations prove that the proposed algorithm does not 

affect the decoding rate of network coded packets compared 

to classical random linear network coding. This lays a fair 

ground to compare the required header size of the proposed 

algorithm with competing algorithms. 

Analysing Fig. 2.a. and Fig. 2.b., it is observed that the 

header size in classical random linear network coding 

increases linearly with the generation size. The upper and 

lower bounds of the header size of the proposed algorithm 

also increases with the generation size in steps. This occurs 

due to the requirement of additional bits to indicate the 

position of non-zero elements while compressing coefficient 

information. However, the rate at which the upper and lower 

bounds of the proposed algorithm increase is significantly 

low compared to both random linear network coding and the 

compressed coefficient vectors approaches. Therefore, the 

header size of the proposed algorithm remains significantly  
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Fig.  1. Abilene Network Topology used to simulate the proposed 

algorithm. 
 

smaller compared to other two approaches. In addition, it 

can also be observed that the header size of the  proposed 

algorithm is not dependent on the size of the Galois field 

used, unlike the other two algorithms. Unlike the 

compressed coefficient vectors method, which limit the 

number of packets that are combined at the information 

source, packets sent from the source using the proposed 

algorithm are linear combinations of all the   packets in the 

generation. This is performed by using non-zero elements 

from the Galois field    in the super coefficient matrix. This 

increases the probability of a redundant combination being 

useful for multiple sinks in a network with packet losses. 

Furthermore, as compression is performed on the coefficient 

information, the compression gain depends on how packets 

are combined in the network. Since authors concentrate on 

small to medium sized networks where the number of 

source packets that get combined are limited, a higher 

compression gain can be achieved.     number of bits are 

sufficient to represent elements in the coefficient 

information for this type of networks. The value   should be 

carefully selected ensuring that a combination received by 

an information sink does not have the same source packet 

combined at intermediate nodes more than    times.  

In the proposed method, network nodes are required to 

perform compression and decompression operations. 

Therefore, compression algorithms should be selected 

considering the computational capabilities of network 

nodes. However, as networks evolve to  software defined 

networks, the usage of complex compression algorithms 

with larger compression gains will be possible. Information 

sources and sinks are also required to know super 

coefficient matrices for each of the considered Galois fields. 

Even a large           coefficient matrix which has 

elements of Galois field    will only occupy 0.95MB. 

Therefore, storage of super coefficient matrices is not a 

challenge. Furthermore, it should be noted that intermediate 

nodes are not required to possess knowledge about the super 

coefficient matrices. Thus, intermediate nodes are not able 

to decode source information. Hence, the usage of the 

proposed method can  also be  extended to  increase  data 

 

  

Fig.  2. Header sizes in bytes vs. number of packets in generation for 

Galois fields (a.)    and (a.)    .  

 

security. Furthermore, as coefficient information includes 

information on how source packets are combined 

throughout the network, collecting coefficient information 

from different paths can be used for network tomography. 

 

4. CONCLUSIONS 

 

This paper presents a novel approach to minimise the 

coefficient vector size of network coded packets in small 

and medium sized networks. Authors exploit the facts that 

the number of source packets that get combined are limited 

and     number of bits are sufficient to represent each 

element of coefficient information. Simulation results 

exhibit that the proposed method has a better capability to 

compress network coding coefficient vectors compared to 

existing algorithms. As for future work, the proposed 

approach of using coefficient information to compress 

coefficient vectors can be extended to be used for large scale 

complex network structures. 
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