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ABSTRACT

We address the problem of data gathering in adhoc networks. We
propose a novel framework where sensor signals are quantized and
mapped to a finite field. The network nodes then combine the data
from different sensors to form messages that are transmitted towards
a receiver. The receiver gathers different messages and reconstructs
the original signal. We study the dependence of the signal recon-
struction error on the quantization and network parameters. We fur-
ther compute a bound on the reconstruction error for sparse sensor
signals that depends on the number of messages gathered by the re-
ceiver. We validate our results with simulations in line array and
tree-based sensor networks and show that our new framework leads
to effective signal reconstruction with limited transmission costs.

Index Terms— Data Gathering, Network Coding, Finite Fields,
Reconstruction, Sensor Network

1. INTRODUCTION

Sensor networks are used in numerous applications, such as envi-
ronmental or industrial monitoring. Sensors generally have a limited
power, which necessitates efficient data gathering and signal pro-
cessing algorithms. These algorithms should combine low complex-
ity encoding at sensors with ad-hoc transmission of data towards a
receiver, which reconstructs the data captured by the sensors. When
the data obeys a model that is known by the receiver, sensors should
ideally only transmit the innovative or critical information that is
necessary for model-based reconstruction. Unfortunately, the sen-
sors generally do not have a priori knowledge required for identifi-
cation of this critical information.

In this paper, we propose a novel framework for effective gath-
ering of the sensor data using principles similar to network coding
[1]. We present a system where the sensor nodes perform finite fields
combinations of data measured by different sensors in order to build
messages that are forwarded to the receiver. Instead of inefficient
strategies where the data from every sensor is sent separately to the
receiver, such network coding operations permit to gather informa-
tion from all sensors in each message. This leads to reduced commu-
nication costs as long as the receiver can reconstruct the data from
an underdetermined system of coded messages, with help of priors
on the sensor data. We analyse our new framework by providing
performance bounds on signal recovery. We show the influence of
the number of messages, the size of the finite fields and the network
size on the data reconstruction error. In particular, we concentrate
on sensor data that is sparse and locally correlated and show that the
decoding error stays small even if a small number of messages are
collected by the receiver.

Numerous works have addressed the problem of effective gath-
ering of data in sensor networks [2], and the data collection algo-
rithms are generally driven by factors such as the sensors’ power
and the network topology, for example. Rate allocation algorithms
for data collection have been proposed in [3], and Distributed Source
Coding (DSC) algorithms have been proposed for reducing data re-
dundancy in the network [4], [5]. However, such methods assume
that data correlation is known by the sensors and are difficult to im-
plement in fully distributed systems. Network coding ideas have
been considered for effective data gathering in [6], where the decod-
ing is performed at the receiver from a full rank matrix of linearly
independent messages. Finally, we note that our solution bares some
resemblance with compressed sensing ideas [7], where information
can be sampled efficiently under the assumption that signal priors
can be used in the reconstruction. Differently than the compressed
sensing framework though, the combinations in our system are per-
formed in a finite field due to network communication constraints. A
few recent works have analysed finite field compressive sensing from
information theory perspective. For example, the work in [8] stud-
ies the error exponent value for recovery of finite field sparse signals
from their linear measurements performed in Galois field. This ex-
pression is developed under the assumption that the sampling matrix
elements are i.i.d. and uniformly sampled from the Galois field. The
problem of the recovery of a low rank matrix from its linear mea-
surements in a Galois field is studied in [9], where the authors pro-
vide fundamental limits on sampling requirements and show that the
decoding error bound is small for arbitrary matrices of given rank.
In this work we rather consider a generic setup where processing is
performed in a finite field of arbitrary size and signal and sampling
matrices have arbitrary probability mass functions. In this context,
our study is the first work that addresses the problem of data recon-
struction from underdetermined systems at decoder and for general
signal models.

The rest of this paper is organised as follows. Section 2 describes
the proposed data gathering framework. Section 3 studies the analy-
sis of the decoding error. Simulation results and discussions are then
given in Section 4.

2. DATA GATHERING FRAMEWORK

In this section, we present in detail our data gathering system for
adhoc sensor networks. We consider that the network is represented
by a directed graph G = (V, E) as illustrated in Fig. 1. The set
of vertices V represents sensors and the edge set E represents the
connections between sensors. We consider that the network is con-
nected. We represent the set of directed edges E by an asymmetric
adjacency matrix, where element ei,j has a nonzero value if the sen-

5123978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



sisj

r

Psi

Fig. 1. Directed sensor network. Predecessors Psi
of sensor si are

sensors positioned farther than si from the receiver r.

sor si communicates data towards sj . We call as predecessors of si

the set of nodes Psi
that are the direct neighbors of si but with a

larger hop-distance to the receiver r.
The sensors {si}, with 1 ≤ i ≤ S, measure values of a scalar

function that lives on the sensor graph. For minimal communica-
tion costs, the sensors should ideally transmit to the receiver only
data that are innovative with respect to the information form other
sensors. This is however hard to achieve in realistic settings where
sensors are of low complexity and only have a local view of the
network. We therefore propose that the network conveys messages
that are random combinations of sensor data, in order to encode in-
novative information with high probability. In more details, we as-
sume that the sensor measurements xi, 1 ≤ i ≤ S, represent uni-
formly quantized values that are mapped by injection to the values
(0, . . . , q−1) of a finite field Fq of size q. The data collection is per-
formed as follows. We first assign weights wi ∈ Fq to every sensor.
Then, sensors at the border of the network (i.e., sensors that do not
have any incoming link) initiate the data gathering. Messages are
collected synchronously along the directed collection paths where
each node performs weighted combinations of sensor measurements
using modulo q operations. For instance, the message yi ∈ Fq cre-
ated at the sensor si is the result of the weighted combination of its
current measurement and the messages yj received from its prede-
cessors Psi

. It reads

yi = (wi ⊙ xi) ⊕
X

j∈Psi

yj . (1)

The message yj has been similarly constructed by weighted com-
bination of the measurement of sensor sj and data received from
its predecessors Psj

. Note that the operators ⊙ and ⊕ represent
element-wise modulo-q multiplication and addition. The data gath-
ering terminates when M messages have reached the receiver. Fi-
nally, the messages at receiver can be represented in a matrix form
as

Y = W ⊗ X, (2)

where X ∈ F S×1
q represents a vector of sensor measurement values

xi, 1 ≤ i ≤ S and the vector Y ∈ F M×1
q contains the received

messages. The coding matrix W ∈ F M×S
q describes the network

coding operations and the operator ⊗ describes the modulo-q matrix
multiplication. Remark that the i-th row of W represents the coding
vector used for building the i-th message yi.

In general, the system of Eq. (2) is undetermined. The recon-
struction problem at decoder thus consists in reconstructing the sen-
sor data from a small number of messages with help of priors on the
signal under observation. In other words, the data has to determine
the value X that both satisfies the constraints from Eq. (2), and fits
the data model. Such problem can be solved with algorithms such

as message-passing decoders [10]. We are interested in this paper in
analysing the performance bounds of the proposed system.

3. DECODER PERFORMANCE BOUNDS

We compute performance bounds for our data gathering framework
by studying the decoding error probability. We assume a general
signal model where the finite field representation of the sensor signal
X ∈ F S×1

q and the decoded signal X̂ ∈ F S×1
q belong to a class of

signals denoted by F . This class represents all the possible signals
that match the data model. Under this assumption, a reconstruction
error occurs when the decoder selects a signal from F that matches
the coding conditions, i.e., Y = W ⊗ X = W ⊗ X̂ , but that is
different from X. The decoding error probability thus reads

p(X̂|X) = p

„

X̂ ∈ F , s.t. Y = W ⊗ X̂ and X̂ 6= X

«

(3)

≤
X

X̂ ∈ F

p

„

X̂ s.t. Y = W ⊗ X̂

«

.

The work in [8] uses a similar setup for expressing the decoding
error probability when the coding is performed in a Galois field with
uniformly distributed coefficients. We study here the decoding per-
formance for a more generic framework in finite fields of arbitrary
size and with an arbitrary coding matrix. The computation of the
performance bounds is quite different in such a generic setup.

We can derive the bound in Eq. (3) by computing the probability
for a signal in X̂ ∈ F to satisfy the coding equations at decoder. It
reads

p(Y = W ⊗ X̂) =
M
Y

i=1

p

„

yi = Wi,: ⊗ X̂

«

, (4)

where Wi,: represents the i-th row of the coding matrix W, with the
coding coefficients in each row chosen independently. We observe
now that, if Wi,:⊗X̂ = Y = Wi,:⊗X, then Wi,:⊗(X̂⊖X) = 0.
Thus, we have

p

„

yi = Wi,: ⊗ X̂

«

= p

„ S
X

s=1

Wi,s ⊙ (x̂s ⊖ xs) = 0

«

. (5)

Therefore, the set of error events E is given as the collection of M
events ei for which

S
X

s=1

Wi,s ⊙ (x̂s ⊖ xs) = 0 (6)

holds. Computing the decoder error probability boils down to build-
ing systematically the error event set E. Once the full set of events
is known, the decoder error probability is computed as the sum of
the probabilities of events in this set that generates a decoding error.

We first identify the events that simplify the systematic construc-
tion of the set of error events E. As a illustrative example, we con-
sider the case where the vectors X and X̂ differ only in the first three
positions. Let us for s ∈ {1, 2, 3} be us = (Wi,s ⊙ (x̂s ⊖ xs)).
Then, we observe that the expression in Eq. (6) is equal to (u1 ⊕
u2 ⊕ u3) = 0 in a finite field, when the sum of the us would take
the values I = {0, q, 2q} in a (non-finite) integer field. In particu-
lar, this sum would be 0 if all three coefficients Wi,s in our example
are equal to zero; it would possibly sum up to q if more than one
coefficient value is non-zero, and would possibly sum up to 2q if all
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three coefficients are non-zero. With this example that illustrates the
cyclic properties of additions in finite fields, we see that the error
events could be separated into different cases that reflects the num-
ber of coefficients Wi,s that have a zero value, where the index s

defines the positions where the vectors X and X̂ are different.
We now extend these development to more general cases. We

denote by A ∈ {1, . . . , 2K} the number of non-zero coding ma-
trix coefficients at positions where X and X̂ differ. Alternatively,
let B ∈ {0, . . . , 2K} denote the number of zero elements among
coding matrix coefficients at positions where X and X̂ differ. Since
X and X̂ differ in k ∈ {1, . . . , K} positions by our initial assump-
tion, we have A+B = 2k; in other words the signals are multiplied
by zero coefficients at 2k − A positions. We further denote by eA

and ēB the sets corresponding to the cases with A non-zero values
in the coding matrix coefficients at positions where X and X̂ differ,
and respectively B zero coefficients at these positions. The size of
these sets is denoted by S(eA) and S(ēB), respectively. Then, the
probability of an error event ei to happen can thus be computed over
all values A as follows

p(ei) =
K

X

k=1

2k
X

A=1

(

„

p(cW 6= 0)

«A

S(eA)

„

p(cW = 0)

«2k−A

S(ēB)

)

,

(7)
where cW is one of the coefficients in the coding matrix, which

follow an i.i.d. distribution in the design of W . We now compute
the expected size of the sets eA and eB .

Because of the circular property of multiplication in arbitrary
fields, the same coding vector multiplied with two different signals
may give the same result. The event eA denotes such cases amongst
the coding vector with A nonzero elements at positions where X and
X̂ differ. Then we can write the probability of expected size of the
set eA as

S(eA) ≤ |X̂A|

A
X

m=1

A
X

l=1

q−1
X

n=1

p

„

C(P ((m − 1)q, n, l))

«

p

„

C(P ((m − 1)q, n))

« , (8)

where |X̂A| here counts the total number of vectors in F with at
least A nonzero values at positions where X and X̂ differ. It mul-
tiplies the expected number of error event realizations for each par-
ticular X̂A ⊂ F to give an bound on the size of eA. In particular,
the function C(P ) lists all the possible combinations of summands
from the realisation of a partition function P . The partition function
P (a, b) of a number a defines a partition of the different represen-
tations of the number a with the biggest summand being b. The
function P (a, b, c) represents a partition of the possible representa-
tions of the number a with c summands, where the biggest element
in the sum is b. In our case, we compute partition functions consid-
ering up to c nonzero summands. The reason for this is that modulo
multiplication result can be equal to zero, even when both multiplied
values are nonzero. We therefore here modify the classical partition
function such that it includes these special cases.

As consequence of the circularity of the modulo product in the
arbitrary field, certain realizations are more probable than other. In
the previous equation p denotes the probability mass function of the
product of the two random variables Z = Z1Z2, that stand for distri-
butions of the coding vector and signal vector values. The pmf of the
random variable Z is first computed in the real field from the pmfs of
Z1 and Z2 using transform techniques and the values of Z are quan-
tized to the range {0, . . . , q − 1}. The probabilities of the random
variable realizations that have the same congruent modulo q (same
reminders) are summed up together. Remark that the data model F

influence is not explicitly visible in the error term. It however drives
the number of partitions and it constraints values in X̂A.

Finally, the size of the set S(ēB) is simply given as

S(ēB) = |X̂B |, (9)

which is the cardinality of the set of possible vectors in F with B
arbitrary values at positions multiplied by zero coefficients in the
coding vector. Remark that the size of the set ēB is easier to com-
pute than the size of eA; indeed, the actual values of the signals to
be consider are unimportant since they are multiplied by zero coeffi-
cients.

By combining Eq. (8) into (7), we obtain the probability p(ei)
of the error event ei. Finally, by inserting this result into Eq. (5), we
can bound the error probability of Eq. (3) as

p(X̂|X) ≤ p(ei)
M (10)

Recall that, even if the influence of the data model is not explicit in
this last relation, the form of the data in the set F drives the proba-
bility p(ei) through Eqs. (8) and (9).

4. EXPERIMENTAL RESULTS AND DISCUSSION

We now study the decoder error bound and analyse the performance
of the proposed framework in different settings. We assume that
sensors are randomly distributed and that the data gathering paths
are built with a shortest path algorithm. The results are given for two
types of networks, namely line array and tree-like networks.

Signals in sensor networks used for environmental monitoring
very often have a small number of non-zero values locally posi-
tioned, while the rest of the values are zeros. Therefore, we adopt
this data model in our simulations and we assume that the class of
signals of interest F is formed by signals with up to K non-zero val-
ues that are grouped locally on the graph. Furthermore, we consider
that these non-zeros values follow Uniform or Discrete Laplacian
distributions. Finally, we assume that the values of the coding ma-
trix are chosen uniformly at random, similar to the coding matrix
design used in [8].

First, we study the evolution of the performance bound as a func-
tion of the number of messages, for different sparsity levels (i.e., dif-
ferent values of K). In order to help the evaluation, we also show
the bound given in [8]

p(X̂|X) ≤ K2SHB(K/S)(q − 1)Kq−M , (11)

where HB(K/S) is a binary entropy. This decoding error has how-
ever been developed for a framework where linear combinations are
performed in GF (q) for prime values of the field size q, where the
elements of the matrix W that are chosen uniformly at random in a
Galois field GF (q) and the signals are chosen uniformly from the
set of sparse signals. Note that our bound in Eq. (10) can be seen
as a generalization of the bound in Eq. (11), since we allow net-
work combinations to be performed in a finite field or arbitrary size
q using modulo q operations. Remark that for the same set of the as-
sumptions (parameters, linear combinations in Galois field and data
model) both bounds actually match.

Figure 2 gives the error decoder performance vs. number of
received messages for (DR) in [8] and for our setup (PM), for the
parameter set (S, K, q, signal model). The lower error values for
PM is a consequence of set cardinality: the cardinality of the set F
is by construction smaller than for the set of K-sparse signals whose
non-zero values are arbitrarily distributed in DR.
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PM, K=2
PM, K=3
PM, K=5
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Fig. 2. Error decoding probability (log scale) for line array sensor
network with parameters (S, K, q, sparse signal distribution).
PM: proposed method bound calculated for parameters
(20, [2, 3, 5], 7, Uniform). DR: Draper et al. bound for parameters
(20, [2, 3, 5], 7, Uniform).
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PM, q=7
PM, q=17
DR, q=7
DR, q=17

Fig. 3. Error decoding probability (log scale) for line array sensor
network with parameters (S, K, q, sparse signal distribution).
PM: proposed method bound calculated for parameters
(20, 2, [7, 17], Uniform). DR: Draper et al. bound for param-
eters (20, 2, [7, 17], Uniform).

In addition, we repeat similar comparisons but for different sizes
of the finite fields where processing is performed. We clearly see
that the decoding error decreases for larger values q of the field size.
Note that we chose prime values for the field size q for the sake
of comparison with the framework in [8]; however, our framework
could use any value for q and the results actually follow the same
tendency as the one shown in Figure 3.

Finally, we want to study the influence of the data model on the
performance bounds. We consider a second class of signals, where
the number of non-zero values is exactly K. These non-zeros values
are again grouped locally on the graph. The computations of our per-
formance bounds is adapted in this case by putting k = K exactly,
and by choosing A even in {2, . . . , 2K} (i.e., two different vectors
with fixed K may differ only in an even number of positions). Fig.
4 illustrates the decoding error probability for both signal models
and for line array (LA) and tree (TR) network. The tree network has
roughly 30% more connections between sensors than the line array
network. As expected, we see that the error is smaller for signals
when the sparsity is fixed, as the set of possible signals is smaller
in this case, hence the decoding error is reduced. Due to the same
reasons, smaller values of sparsity (i.e., K) leads to smaller decod-
ing error probabilities. Finally, we observe that in all cases the error
bounds decreases exponentially with the number of messages, which
is very important for building effective data gathering solutions.
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LA,fixed K=5
LA, up to K=5
TR, fixed K=5
TR, up to K=5

Fig. 4. Error decoding probability (log scale) for line
array and tree-based sensor network with parameters:
(S, K, q, sparse signal model) = (20, 5, 8, DiscreteLaplacian).
The error is calculated for sparsity of K and up to K.

5. CONCLUSIONS

In this work, we have proposed a new data gathering system for sen-
sor networks, where a small number of network messages are created
by combination of quantized sensor measurements in a finite field of
arbitrary size. These messages are communicated through the net-
work from the leaf sensors towards the receiver. We have developed
bounds on the decoding error probability as a function of the num-
ber of received messages, the design of the coding matrix and the
signal class. We finally illustrate these dependencies by simulations
in different network settings, which confirm that the framework of-
fers an interesting solution for data gathering with a small number of
messages in communication-constrained networks.
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