
ON THE USE OF EXPLICIT REDUNDANCY FOR
DELAYLESS SOFT-DECISION AUDIO DECODING

Florian Pflug and Tim Fingscheidt

Institute for Communications Technology, Technische Universität Braunschweig
Schleinitzstr. 22, 38106 Braunschweig, Germany

E-mail: {f.pflug,t.fingscheidt}@tu-bs.de

ABSTRACT

Wireless transmission systems for high-quality digital audio signals

require a low end-to-end delay and strong robustness against channel

distortions. In this work we investigate a Bayesian approach to de-

layless soft-decision decoding of high-quality audio signals jointly

exploiting both implicit redundancy within the audio signal and ex-

plicit sample-wise redundancy appended by a channel (block) en-

coder. Because our approach introduces no algorithmic delay, it can

be employed in audio transmission systems that are extremely sensi-

tive to latency like, e. g., wireless digital microphones. Experiments

carried out with representative audio signals transmitted over AWGN

channels show a significant increase in signal quality.

Index Terms— soft-decision audio decoding, delayless, linear

prediction, block code

1. INTRODUCTION

Wireless transmission systems for high-quality audio signals require

strong robustness against channel distortions and a low end-to-end

delay. As a result, efficient approaches to error concealment are nec-

essary, otherwise even a single residual bit error could lead to an

unacceptable degradation of audio quality for the listener.

Uncompressed high-quality audio signals sampled at fs ≥
48 kHz and quantized with M ≥ 16 bits per sample exhibit a large

amount of residual redundancy. Instead of removing this redun-

dancy by source encoding and later appending it again explicitly by

channel coding, this redundancy can be directly exploited for error

concealment [1]. As a result, a large number of approaches to ro-

bust source decoding and joint source-channel decoding exploiting

residual redundancy exist (see, e. g., [2–7]). These approaches work

either on source-coded or on narrow-band signals with a low number

of possible sample values, allowing them to apply Markov chains

in order to exploit statistical properties of the transmitted signal.

However, this is not possible for fine-quantized audio signals with

high bit rates due to the exponential rise of complexity [8].

In order to increase the robustness of digital transmissions, usu-

ally channel coding schemes with corresponding soft-output chan-

nel decoders (e. g., [9–13]) are employed. However, these schemes

introduce a certain amount of algorithmic delay, e. g., because rela-

tively large block lengths are required for decent error correction per-

formance. In addition, efficient channel codes such as low-density

parity-check (LDPC) codes [12] or turbo codes [13] can tremen-

dously increase the complexity of a receiver because of their iterative

decoding processes.

An efficient approach to soft-decision decoding of fine-quantized

audio signals employing high-order linear prediction has recently
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Fig. 1: High-level block diagram of the simulation setup.
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Fig. 2: Block diagram of the soft-decision audio decoder.

been presented in [8, 14]. This approach is based on a Bayesian

framework introduced in [5, 15] and allows us to efficiently ex-

ploit both the implicit redundancy within an audio signal (by a

time-variant prior term) and reliability information available from

the channel (likelihood term) with low or even no algorithmic de-

lay. In this work we investigate the effects of exploiting additional

sample-wise explicit redundancy in terms of block codes within

the Bayesian framework in the context of prediction-based robust

decoding of fine-quantized audio signals. Due to the fact that these

block codes are built upon just a single audio sample, the resulting

scheme still does not introduce any algorithmic delay.

The paper is organized as follows. In Sec. 2 a brief summary of

our soft-decision decoding approach for high-quality audio and the

underlying Bayesian framework is provided. Sec. 3 describes the

employment of sample-individual block codes and the correspond-

ing delayless decoding approach within the Bayesian framework.

The simulation setup and the evaluation of the proposed approach

is presented in Sec. 4. Finally, the paper is concluded in Sec. 5.

2. BAYESIAN FRAMEWORK FOR

SOFT-DECISION AUDIO DECODING

Our basic simulation setup consisting of a transmitter, an equivalent

channel and a receiver is presented in Figs. 1 and 2. In the transmit-

ter, audio samples sn ∈ {−1,−1 + ∆, . . . , 1−∆} quantized with

a resolution of M bits are mapped to bit combinations xn=(xn(0),
xn(1), . . . , xn(m), . . . , xn(M −1)), with n ∈ {0, 1, . . .} denot-

ing the sample index, ∆ = 2−M+1 being the quantization step

size and xn(m) ∈ {0, 1} denoting a single bit. These bits are the

input of the equivalent channel, which comprises modulation, the

transmission channel, and (soft-output) demodulation (e. g., [4, 16]).

The decoder receives log-likelihood ratios (LLRs) L(x̂n) for each

hard-decided received bit x̂n(m) = 0.5 · (1 − sign(L(x̂n(m)))),
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which are utilized to compute bit error probabilities pe,n(m) =
1/(1 + exp(|L(x̂n(m))|)) (e. g., [4, 5, 11]). With the assumption

of a memoryless channel, we can now determine the likelihood term

of the Bayesian framework, the so-called transition probabilities

P(x̂n|x
(i)) =

M−1
∏

m=0

P(x̂n(m)|x(i)(m)) , (1)

with

P(x̂n(m)|x(i)
n (m))=

{

pe,n(m) if x̂n(m) 6=x
(i)
n (m),

1− pe,n(m) else.

The term P(x̂n|x
(i)) describes the probability for transition from a

possibly transmitted bit combination x(i), with i ∈ {0, 1, . . . , 2M −
1}, to the received bit combination x̂n. Thereby, it comprises all

available channel reliability information expressed by the LLRs.

2.1. A Posteriori Probabilities

In order to estimate the transmitted audio sample, a posteriori proba-

bilities P(x(i)|x̂n
0 ) for each x(i) with respect to the complete receive

history x̂n
0 = (x̂0, x̂1, . . . , x̂n) have to be determined. These prob-

abilities can be split up by applying Bayes’ theorem, basic laws of

statistics and the assumption of a memoryless channel according to

(see, e. g., [17])

P(x(i)|x̂n, x̂
n−1
0 ) =

1

C
· P(x̂n|x

(i)) · P(x(i)|x̂n−1
0 ) , (2)

with P(x̂n|x
(i)) denoting the transition probabilities from (1),

P(x(i)|x̂n−1
0 ) being prediction probabilities (prior term), and C

denoting a constant such that
∑2M−1

i=0 P(x(i)|x̂n, x̂
n−1
0 ) = 1.

Prediction probabilities P(x(i)|x̂n−1
0 ) comprise a priori knowl-

edge about a possibly transmitted bit combination x(i) given the

complete history of receive values x̂n−1
0 . For the computation of

this term the following approaches are employed in this work.

2.1.1. Prediction Probabilities with Static

0th-Order A Priori Knowledge

If the transmitted bit combination can be modeled as an output of

a 0th-order Markov process, then the prediction probability is given

by P(x(i)|x̂n−1
0 ) = P(x(i)) = P(s(i)), with s(i) being the sample

value belonging to x(i) [5, 18]. The probability P(s(i)) can be de-

termined by a histogram measurement in a training process, leading

to a priori knowledge of 0th order (AK0). However, larger Markov

model orders exploiting the residual redundancy of multiple preced-

ing sample values exhibit the problem of exponential rise of com-

plexity and storage (see, e. g., [8, 19]). For example, a memory size

of 22M is required for a 1st-order Markov model, which corresponds

to approximately 8 GB for CD-quality audio with M = 16. Fur-

thermore, approximately 22M multiply accumulates (MACs) have

to be computed for every sample instant n (2M MACs for the pre-

diction probabilities for each of the 2M possible values of s(i) dur-

ing the final estimation). Naturally, this is technically not feasible

for fine-quantized audio signals. As a result, we employ a newer

sophisticated and efficient approach to prediction probabilities for

high-quality audio, which is briefly described in the following.

2.1.2. Prediction Probabilities with Linear Predictive

Np-th-Order A Priori Knowledge

In order to efficiently exploit the residual redundancy in a large num-

ber of preceding estimated samples, we build upon a newer approach
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Fig. 3: Block diagram of the soft-decision audio decoder with pre-

diction probabilities P(x(i)|x̂n−1
n−Np

) computed by linear prediction.

based on linear prediction presented in [8,14,19]. Here, we compute

a prediction value ŝp,n by a linear combination of Np previously

estimated sample values ŝn−1
n−Np

= (ŝn−Np , ŝn−Np+1, . . . , ŝn−1)
T

according to

ŝp,n = a
T
n · ŝn−1

n−Np
, (3)

with Np denoting the prediction order, a = (an(Np), an(Np −
1), . . . , an(1))

T being prediction coefficients and (·)T denoting a

transposed vector. Thereby, the influence of the previously estimated

samples ŝn−1
n−Np

on the final estimate ŝn can be condensed in ŝp,n due

to ŝp,n = E{ŝn |̂s
n−1
n−Np

}, with E{·} denoting the expected value.

With a sufficiently large prediction order Np and the direct associa-

tion of x(i) to s(i) and x̂n−1
n−Np

to ŝn−1
n−Np

, respectively, the prediction

probabilities can be approximated by

P(x(i)|x̂n−1
0 ) ≈ P(x(i)|x̂n−1

n−Np
)

≈ P(s(i)|ŝp,n) . (4)

Finally, the probability P(s(i)|ŝp,n) for a possibly transmitted sam-

ple value s(i) given the prediction value ŝp,n can be determined by

shifting the probability density function (PDF) pE(ên = ŝn − ŝp,n)
of the prediction error ên by ŝp,n (see Fig. 3) and integration over

the i-th linear PCM quantization interval1 Ii according to

P(s(i)|ŝp,n) =

∫

Ii

pE(sn − ŝp,n) dsn . (5)

We employ the well-known normalized least-mean-square

(NLMS) algorithm (see, e. g., [20]) for a dynamic update of pre-

diction coefficients after each estimation. The NLMS algorithm is

also widely utilized in the field of lossless audio encoding [21, 22].

The corresponding NLMS adaptation rule can be written as

an+1 = an +
ên

1 + λ · ||̂sn−1
n−Np

||2
· ŝn−1

n−Np
, (6)

with λ being a tuning parameter controlling the convergence

rate [21]. At sample index n = 0, the variables are initialized

according to a
−1 = (1/Np, . . . , 1/Np)

T and ŝ−1
−Np

= (0, . . . , 0)T .

The decoding results can be improved if information about

the current predictability of the audio signal is exploited. There-

fore, multiple adaptively-shaped prediction error PDFs pq

E(e)

1The integration intervals are given by I0=(−∞,−1], Ii = [−1+(i−
1) ·∆,−1+ i ·∆], for i ∈ {1, 2, . . . , 2M−2}, and I2M−1 = [1−2 ·∆,∞).
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are employed, q ∈ {1, 2, . . . , Q}, each being trained for dif-

ferent magnitude intervals of the prediction value, i. e., q =
min(⌊Q · |sp,n| + 1⌋, Q). A comprehensive description of this

approach has been presented in [19].

2.2. Audio Sample Estimation

The received sample is finally estimated with the a posteriori prob-

abilities from (2) by employing the minimum mean-square error

(MMSE) E{(sn − ŝn)
2} → min. as an error criterion. The cor-

responding estimation rule can be written as

ŝn =
2M−1
∑

i=0

s(i) · P(x(i)|x̂n
n−Np) . (7)

3. UTILIZATION OF EXPLICIT REDUNDANCY IN

SOFT-DECISION AUDIO DECODING

The Bayesian framework in (2) allows us to exploit any avail-

able a priori knowledge about a possibly transmitted bit combi-

nation x(i) for the estimation of audio samples. As a result, it

enables us to utilize explicit redundancy that has been appended

to the information bits xn on the transmitter side, e. g., by means

of sample-individual block codes. Consequently, a transmitter-

sided channel encoder is necessary, yielding a code word yn for

every xn that is to be transmitted over the equivalent channel.

In order to maintain a clear presentation, we limit the follow-

ing description to systematic code words yn = (xn, zn), with

zn ∈ {z(0), z(1), . . . , z(r), . . . , z(2
R
−1)} being a transmitted parity

bit combination, z(r) being a possible parity bit combination of a

rate M/M+R block code and R denoting the total number of parity

bits (cf. [5, 14]).

As a result, analog to the derivation of (2) the required a poste-

riori probability P(x(i)|x̂n
0 , ẑ

n
0 ) can be split up by applying Bayes’

theorem, basic laws of statistics and marginalization over r accord-

ing to

P(x(i)|x̂n
0 , ẑ

n
0 ) =

1

C
· P(x̂n|x

(i)) · P(x(i)|x̂n−1
0 , ẑn−1

0 )

·

2R−1
∑

r=0

P(ẑn|z
(r)) · P(z(r)|x(i)) , (8)

with ẑn being the received hard-decided parity bits, P(ẑn|z
(r)) de-

noting the transition probability of the parity bits, and P(z(r)|x(i))
being a (pseudo-)statistical description of the employed block code.

The term P(z(r)|x(i)) must be known in advance and can be stored

in the receiver as a 2R × 2M -dimensional matrix.

Let us discuss an example: For a single-parity-check code

(x(i), z(r)) with R = 1 Eq. (8) reads as

P(x(i)|x̂n
0 , ẑ

n
0 ) =

1

C
· P(x̂n|x

(i)) · P(x(i)|x̂n−1
0 , ẑn−1

0 )

·

(

P(ẑn|z
(0) = 0) · P(z(0) = 0|x(i))

+ P(ẑn|z
(1) = 1) · P(z(1) = 1|x(i))

)

. (9)

In the case that this parity check covers only the two most significant

bits (MSBs, gray-shaded) of a natural-binary-mapped bit combina-

tion with M = 3 bits, the corresponding parity-check matrix can be

given in pseudo-statistical form by

P(z(r)|x(i)) =

(

1 1 0 0 0 0 1 1
0 0 1 1 1 1 0 0

)

r=0: zn=0

r=1: zn=1

with

0 1 0 1 0 1 0 1 LSB

x(i) = 0 0 1 1 0 0 1 1
0 0 0 0 1 1 1 1 MSB

i= 0 1 2 3 4 5 6 7

.

The implementation of more advanced sample-individual block

codes with R > 1 is straightforward by utilizing (8).

4. SIMULATIONS

4.1. Experimental Setup

We evaluate the proposed explicit redundancy approach by carry-

ing out simulations with 13 monaural audio signals transmitted over

an equivalent channel disturbed by additive white Gaussian noise

(AWGN) with binary phase-shift keying (BPSK) and coherent soft-

demodulation (cf., e. g., [23]). All audio signals are pulse-code mod-

ulated (PCM), sampled at 48 kHz, initially uniformly quantized with

24 bits per sample (as reference signals for quality measures), then

with 16 bits per sample, and are normalized to −26 dBFS (deci-

bels relative to full-scale). The total length of the audio signals is

96 s and they comprise excerpts from classical pieces and a motion-

picture soundtrack with effects and instruments like organs, brass

instruments, strings, percussions, pianos and synthesizers. For an in-

creased reliability of our measurements all files are transmitted five

times for every investigated channel state.

The a priori probabilities P(x(i)) and prior distributions pq

E(e)
required for the approaches presented in Secs. 2.1.1 and 2.1.2, re-

spectively, have been measured in a training process from a database

of 15 musical pieces with a total length of 81 min (comprising var-

ious pieces of classical and electronic music, and a motion-picture

soundtrack with speech, music and effects) exclusively utilized for

training purposes.

In order to measure the decoding performance, we employ

global (SNRglobal) and segmental (SNRseg) signal-to-noise ratio

(SNR) measurements (cf., e. g., [24]), and the basic model imple-

mentation of the perceptual evaluation of audio quality (PEAQ)

standard [25, 26] as described in [27]. For every measurement, the

reference signal s̃ quantized with 24 bits per sample and the esti-

mated 16 bit audio sample ŝ are available. The segmental SNR is

computed with a segment size of 480 samples (i. e., 10 ms). The

SNR measures are especially useful in the field of error conceal-

ment, due to SNRglobal being sensitive to rare transient distortions

like high-energy clicks, whereas SNRseg being sensitive to perma-

nent but low-amplitude artifacts like crackling. The PEAQ Recom-

mendation defines objective difference grades (ODGs) ranging from

0.0 (imperceptible) to −4.0 (very annoying)2 .

Experiments carried out in the preparatory stage showed that the

parameters λ = 20 for the NLMS algorithm, a prediction order of

Np = 10 and a number of Q=16 adaptively-shaped prior distribu-

tions are reasonable choices.

4.2. Discussion

In order to evaluate the effects of employing explicit redundancy

for delayless soft-decision audio decoding, simulations with single-

parity-check (R = 1) codes C1, C2, . . . , C16 covering 1, 2, . . . ,

2Please note that the algorithm given in the PEAQ Recommendation ac-
tually leads to a maximum ODG score of 0.22.
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Fig. 4: SNR performance of soft-decision decoding based on linear prediction with Np = 10, Q = 16, and parity codes Cx covering a

number of x MSBs (LP, Cx), soft-decision decoding based on linear prediction with Np = 10, Q = 16, and without explicit redundancy

(LP), with 0th order a priori knowledge (AK0) and hard-decision decoding (HD).

Eb/N0

Method 0 dB 2 dB 4 dB 6 dB 8 dB 10 dB

LP, C16 −3.8 −3.5 −2.5 −1.3 0.1 0.2

LP, C10 −3.8 −3.3 −2.2 −1.0 0.1 0.2

LP, C8 −3.7 −3.2 −2.1 −1.3 −0.2 0.2

LP, C1 −3.8 −3.6 −3.0 −2.1 −1.0 0.1
LP −3.8 −3.6 −2.9 −1.9 −0.8 0.1
AK0 −3.9 −3.9 −3.8 −3.9 −3.5 −1.2
HD −3.9 −3.9 −3.9 −3.9 −3.2 −2.7

Table 1: Mean PEAQ ODG scores of soft-decision decoding based

on linear prediction with Np = 10, Q = 16, and parity codes

Cx covering a number of x MSBs (LP, Cx), soft-decision decoding

based on linear prediction with Np = 10, Q = 16, and without ex-

plicit redundancy (LP), with 0th order a priori knowledge (AK0) and

hard-decision decoding (HD). Best results are printed in boldface.

16 MSBs of the transmitted bit combinations xn, respectively, have

been carried out. In order to maintain an accessible presentation, the

most important results are presented in Fig. 4 and Table 1 for the

linear prediction approach with explicit redundancy (LP, Cx), with-

out explicit redundancy (LP), soft-decision decoding with 0th order

a priori knowledge (AK0) and hard-decision decoding (HD). Please

note that the total energy of the transmitted coded bit combinations

(xn, zn) is equal to the total energy of the uncoded bit combinations

xn, enabling a direct and fair comparison of all depicted schemes.

It can be seen that the exploitation of explicit redundancy in

terms of sample-individual parity-check codes for PCM audio sig-

nals leads to enormous gains in SNRglobal, SNRseg and PEAQ ODG,

if the parity bit considers a sufficiently large number of MSBs.

Regarding the maximum achievable audio SNR of approximately

75 dB, the investigated codes notably improve the decoding results

by 2 dB Eb/N0 compared to the corresponding LP approach without

explicit redundancy.

The C16 code covering whole bit combinations xn significantly

improves the decoding results by approximately 20 dB (SNRglobal

and SNRseg) compared to the LP approach for medium channel qual-

ity in the range of Eb/N0 ≈ 7 . . . 8 dB. However, the SNR and

PEAQ ODG performance worsens enormously for lower Eb/N0 ra-

tios. This is due to the low significance of the parity bit when too

many disturbed bits are considered in the decoding process.

In contrast, the employment of the C1 code covering only one

MSB has negative effects on the decoding results, worsening the

SNRglobal results by a few decibels compared to the uncoded LP ap-

proach. This shows that a sufficient amount of information bits needs

to be included into the parity checks in order to yield noticeable gains

in audio quality.

The application of the C8 and C10 codes leads to the most bal-

anced decoding results. The C8 code delivers the best SNR values

for Eb/N0 = 0 dB and the C10 code for Eb/N0 ratios between 2 dB

and 5 dB. Furthermore, the C10 code greatly improves the SNRseg

performance for Eb/N0 > 5 dB, without the performance loss of

the C16 code for extremely bad channel states. This is also reflected

by the PEAQ ODG results.

5. CONCLUSIONS

In this contribution we have evaluated the employment of explicit

redundancy for robust soft-decision decoding of high-quality audio

signals. The explicit redundancy in terms of sample-individual block

codes is being exploited delaylessly within the underlying Bayesian

framework utilized for soft decoding. Besides explicit redundancy,

channel reliability information in terms of LLRs and implicit redun-

dancy within the audio signal are exploited. Simulation results with

single-parity-check codes on an AWGN channel with BPSK mod-

ulation show a considerable gain in audio quality compared to soft

decoding relying only on inherent redundancy and reliability infor-

mation. Precisely, for the case of a nearly artifact-free audio trans-

mission, the utilization of explicit redundancy by a single parity bit

leads to a gain of 2 dB in Eb/N0. Regarding audio SNR and PEAQ

ODG, gains of approximately 20 dB and 0.9 ODG scale units, re-

spectively, can be observed. Our approach can be applied to trans-

mission systems for high-quality audio with very high demands on

latency and robustness, e. g., wireless digital microphones.
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