
LIKELIHOOD CODEBOOK REORDERING VECTOR QUANTIZATION

Chu Meh Chu (cchu3@gatech.edu), David V. Anderson (anderson@gatech.edu)

School of Electrical and Computer Engineering
Georgia Institute of Technology, Atlanta, GA, USA

ABSTRACT

In this paper, a reordering vector quantization algorithm based
on conditional probabilities of a codebook transition matrix
is implemented. The dynamic reordering of the codebook
dramatically decreases the entropy for temporally structured
sources, enabling a second stage of entropy coding to further
improve the efficiency of VQ. Results from synthetic, Markov
sources and speech sources are shown to outperform other
baseline vector quantization algorithms.

Index Terms— vector quantization, entropy coding,
compression

1. INTRODUCTION

Vector quantization (VQ) is a compression technique that is
used to encode data such as speech and images for transmis-
sion and storage purposes. In contrast with scalar quantiza-
tion which quantizes on a sample by sample basis the key idea
behind vector quantization is to compress a block or frame of
samples using a vector codebook. By transmitting only the
index of the codebook vector, a better rate/distortion ratio is
achieved than is possible with only scalar quantization. Many
variations on the basic idea of VQ have been developed and
a review of many of these as well as the fundamentals of VQ
is presented in [1]. One widely-used VQ training algorithm
was developed by Linde, Buzo, and Gray (LBG). The LBG
algorithm uses k-means to develop a vector codebook from a
set of training vectors using the L2 distance between the data
frames and codebook code vectors as a distortion metric.

While basic VQ methods, such as the LBG algorithm,
capture the correlation between the dimensions within a sin-
gle vector, they do not capture correlation between vectors.
For some signals, this vector-to-vector correlation can be sig-
nificant. However, it is more difficult to capture after quan-
tization because the VQ codebook indices do not reside in a
metric space. It is possible to exploit some vector-to-vector
correlation using entropy coders such as the LZW coder but
for large codebooks, the LZW coder becomes less practical.

Several methods have been proposed to exploit the cor-
relation between vectors. Address vector quantization is an
adaptive vector quantization algorithm that exploits such cor-
relation between neighboring image blocks. The concept of

the address codebook, introduced in [2] uses a codebook that
consists of the addresses of the current vector and neighboring
horizontal, vertical, and diagonal vectors. This address code-
book is re-ordered into active and inactive regions of the code-
book using a metric called the score function. The score func-
tion is obtained from the probability transition matrix from
the neighboring image blocks. The address code vectors with
the higher score functions are placed in the active codebook
region while the others go to the inactive region.

Cache vector quantization also exploits this temporal or
spatial correlation between neighboring input vectors [3].
This method essentially creates a temporary (cache) sub-
codebook for each input vector to be encoded by predicting
the next vector from the previously encoded input vectors.

A super-codebook is initially designed from which a
cache (sub-codebook) is extracted. For every vector to be
transmitted, we predict a vector and find a set of code vectors
from the super-codebook to form the sub-codebook. The sub-
codebook size is usually fixed. To make the codebook size
vary with each input vector, a dynamic codebook reordering
vector quantization was proposed [4]. This dynamic code-
book reordering finds the number of instances when the mean
squared error between a code vector in the codebook and the
predicted ones is less than mean squared error between the
current code vector and the predicted one. This number of
instances is the codebook size of the current sub-codebook.

Cache vector and address vector quantization require
shuffling the codebook for each input frame. This leads to a
constant reordering update of the codebook. In [5], the code-
book is reordered once for all input frames according to a
similarity metric called the potential function. This metric is
essentially the energy of the vector. The potential of a vector
is the square of the L2 norm of that vector. This potential
function is used to sort codebook code vectors. This gives it
a structure beneficial for differential pulse code modulation
(DPCM) to decrease its first order differential entropy which,
in turn, increases correlation.

Finite state vector quantization (FSVQ) is another popular
approach for doing vector quantization [6]. FSVQ operates
by using states that correspond to a set of sub-codebooks. The
current state of the encoder is determined by using a next state
function. Next state functions use previously encoded blocks
and the previous state to predict the current state. Each in-

5114978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013

put frame or vector is vector quantized by searching through
the sub-codebook corresponding to a given state. Choosing
the appropriate sub-codebooks and the next state function for
the FSVQ algorithm are non-trivial problems. Furthermore,
FSVQ requires large amounts of memory to handle the vari-
ous sub-codebooks for each state. These three issues are ad-
dressed using the dynamic finite state vector quantization.

Dynamic finite state vector quantization (DFSVQ) is an
extension of FSVQ that uses the next state function as a
reordering procedure [7]. A super-codebook is initially de-
signed from which a sub-codebook is obtained for each input
frame. Encoding each data frame requires reordering of the
codevectors in codebook so that the most probable approxi-
mations of the input data frame are relocated to the top of the
super-codebook. This results in reduction in computational
resources and a much simpler determination of the next state
of the encoder.

Most of the methods listed above strive to ensure that the
majority of VQ indices transmitted come from a smaller set
than the full codebook, thus improving coding efficiency.

Dynamic codebook reordering vector quantization (DCR)
is also a reordering algorithm that reorders the codebook
based on a dissimilarity metric between the quantized cur-
rent frame and the codevectors in the codebook [8]. This
ensures that the indices used are generally near 0 so that sub-
sequent entropy coding can be used to improve overall coding
efficiency.

Previous codebook reordering research has focused on re-
ordering the codebook code vectors according to the simi-
larity and dissimilarity metric between the current and pre-
vious input quantized data frames. In this paper we introduce
the likelihood codebook reordering (LCR) vector quantiza-
tion algorithm. This algorithm treats the transition between
one code vector and the next as a random variable. The basic
approach is similar to that used by Krishnan [8] but transition
probabilities are explicitly estimated during the training pro-
cess. A codebook transition matrix is generated by estimating
the likelihood of each vector-to-vector transition by counting
transitions in the training set. This transition matrix is then
used as described below to dynamically reorder the codebook
indices in an attempt to cluster the indices used near 0.

In section 2, we describe our algorithm in detail. In sec-
tion 3, we present and explain our experimental results. Sec-
tion 4 is comprised of conclusion and recommendations.

2. LIKELIHOOD CODEBOOK REORDERING
VECTOR QUANTIZATION

2.1. Conceptual Formulation

For a well-designed vector quantizer, each code vector is
equally likely to be chosen; a long-term histogram of the
codebook indices generated from the quantization process
will be flat. This implies that the entropy of the indices

is maximized and no further quantization can be achieved.
However, there may be short-term temporal structure that can
be exploited. It is well known that real world signals such
as speech and images have strong temporarily and spatially
correlated regions. Such strong correlations can be exploited
so that adjacent code vectors that are close to each other
according to some metric may be assigned similar or same
symbols in the channel.

In the LCR-VQ algorithm, a count of the transition from
one code vector to the other for a given data is computed
during training to estimate the transition probability between
each code vector pair. Then when quantizing a source, each
codebook vector is assigned a new index based on the tran-
sition likelihood from the previously used codebook vector.
The most likely codebook vector is assigned the index 0 and
the next most likely codebook vector is assigned the index 1,
and so forth. The result is that, according to the transition like-
lihoods, low index numbers will be much more common, with
0 being most common—resulting in an easily compressed in-
dex bit stream.

2.2. Algorithm

The input data is assumed to be a set of ordered vectors {Xt ∈
<L} originating from some source S where t is a discrete
time index. A codebook, C = {c0, . . . , cM−1}, is generated
using the LBG algorithm, or similar, using a set of training
samples from source S. These training samples are then used
to estimate the transition matrix T . Each element of T , that is,
Tij , represents the likelihood of the index j following index
i, or in other words, the likelihood of an input vector, Xt−1,
that is quantized to codebook vector i being followed by an
input vector, Xt, that is quantized to codebook vector j.

Let p represent the previously transmitted index, k is the
index of the current frame to be transmitted. Note that dif-
ferent variables other than i and j are used to emphasize the
fact that the transmitted or stored index is not the same as
the absolute index number of the code vector. Therefore k =
ϕ(i, j, T) and not i is the stored or transmitted index.

• Quantize the input sample, Xt−1, and note the corre-
sponding absolute codebook index, j.

• Find the set of transition likelihoods from codebook
vector j to each code vector in codebook. This cor-
responds to Tj = (Tj1, Tj2, Tj3, . . . , Tj(M−1)).

• Sort the set Tj in descending order. (In practice steps 2
and 3 can be pre-computed or at least partially precom-
puted.)

• Let k = ϕ(i, j, T) denote the sort order of the ith ele-
ment of Tj .

• Quantize the next input sample, Xt, and note the corre-
sponding absolute codebook index, i.

5115

• The transmitted or stored index value for Xt is k =
ϕ(i, j, T).

Figure 3 gives a simple example of the LCR algorithm.
We assume a codebook with 4 code vectors, and a codebook
transition matrix as in part a) of Fig. 3 Assuming that the pre-
viously quantized frame is code vector 2 (c2), we want to find
how the code vectors (c1, c2, c3, c4) in the codebook will the
reordered in the current frame and transmitted to the commu-
nication channel. Part b) of Fig. 3 shows the probability of
transmission of the code vectors given the previously trans-
mitted code vector c2. Part c) shows the reordered codebook
in descending order or likelihood to be transmitted. Thus,
code vector 2 (c2) will be transmitted to the channel as index
3 in this case.

3. RESULTS

0 100 200 300 400 500 600 700 800 900 10000

5

10

15

20

25

30

35

40

45
Histogram of LBG codebook for synthetic data

lo
g 2

o
f
R
e
la
ti
v
e
fr
e
q
u
e
n
c
y

transmitted indices

Fig. 1. Histogram of randomly generated data (with correla-
tion = 0.5) quantized using standard LBG vector quantization

0 1 2 3 4 5 6 7 8 9 100

2

4

6

8

10

12

log2 of transmitted indices

lo
g 2

o
f
re
la
ti
v
e
fr
eq

u
en

cy

Histogram of LCR/DCR algorithms for synthetic data

LCR

DCR

Fig. 2. Histogram of randomly generated data (with correla-
tion = 0.5) quantized by LCR and DCR vector quantization.

We used first-order Gauss-Markov generated data and
real TIMIT speech data to test the performance of our LCR
algorithm. If Y is the d× L data to be quantized, Y assumes
the Gauss-Markov property below.

Yk = αYk−1 + Xk

where Yk is a Gauss-markov vector source, α ε(−1, 1) is the

Previous
0.2 0.3 0.4 0.1
0.1 0.2 0.4 0.3
0.4 0.2 0.3 0.1
0.1 0.3 0.2 0.4

Previous
0.1 0.2 0.4 0.3

c1 c2 c3 c4

c2

c3 c4 c2 c1

c2
c3
c4

a)

N
ex
t

Sorted3
Index

b)

c)

N
ex
t

c1 c2 c3 c4

c1

Fig. 3. Example: illustration of the Likelihood Codebook Re-
ordering algorithm.

correlation parameter and Xk is an L dimensional vector of
an identical independent Gaussian random variable of unit
variance. This first-order Gauss-markov model models many
real world signals such as speech, video, image, etc. There-
fore any results obtained from these synthetic data can be
extended to such real applications.

We set L equal to 10 for our experiment and vary the cor-
relation parameter α. A training database of Y of dimension
d = 100000 is used while a database of dimension d =20000 is
used to test the performance of our LCR algorithm over DCR
and LBG.

Once the testing data is LBG quantized, we calculated
the codebook transition matrix for the testing data set. The
codebook transition matrix is used to calculate the transmit-
ted index. Figure 1 shows the histogram of the testing data
set quantized by LBG algorithm. The histogram is very ran-
dom and has higher entropy than the histogram of both LCR
and DCR algorithms. Figure 2 illustrates that both LCR and
DCR algorithms reorder the indices to be transmitted so that
the lower magnitude indices have higher probability of being
transmitted. Figure 2 also highlights the reduced codebook
size used by our LCR algorithm compared to both LBG and
DCR algorithms. The result of this is lower bit rate for our
LCR algorithm.

Real speech samples from the TIMIT database were also
used to test the working of our LCR algorithm. Female
speech samples from 10 different speakers were obtained
from TIMIT database to train the codebook and test our LCR
algorithm. Line spectral pairs coefficients were obtained for
each speaker sample. The line spectral pairs were obtained by
breaking up the speech into frames of 96 samples from which
10 line spectral pairs were obtained. Figure 4 shows the LBG
histogram of the speech samples while figure 5 demonstrates
that LCR reduces the codebook size relative to that of DCR

5116

and LBG. Bit rate is reduced consequently as a result of this
codebook size reduction.

Table 1 and 2 show that the LCR algorithm results in less
entropy in comparison to that of LBG and DCR vector quan-
tization. The lower the entropy, the greater the likelihood of
a latent structure within the reordered codeboook. Lower en-
tropy is a strong indication of structure and compressability
in a communication channel.

0 100 200 300 400 500 600 700 800 900 10000

100

200

300

400

500

600

700

800
Histogram of LBG codebook for real TIMIT speech data

lo
g 2

o
f
re
la
ti
v
e
fr
e
q
u
e
n
c
y

t ransmitted index numbers

Fig. 4. Histogram of TIMIT speech samples quantized by
LBG vector quantization

0 1 2 3 4 5 6 7 8 9 100

2

4

6

8

10

12

log2 of Transmitted indices

lo
g 2

o
f
R
el
a
ti
v
e
fr
eq

u
en

cy

Histogram of LCR/DCR algorithms for real TIMIT speech data

LCR
DCR

Fig. 5. Histogram of TIMIT speech samples quantized by
both DCR and LCR

Correlation LBG DCR LCR
0.85 2.9778 2.0430 1.2697
0.90 2.9663 1.8288 1.1681
0.95 2.9303 1.5019 0.9880
0.98 2.8823 1.2927 0.8573

Table 1. Table of Entropies verus correlation in Synthetic
data comparing LBG, DCR, and LCR algorithms

4. CONCLUSION

We see that our likelihood algorithm reorders the indices to
lower ranges. Plots of histograms for both dynamic and likeli-
hood reordering algorithms show a much more reduced code-

Speech Samples LBG DCR LCR
1 2.6855 2.3783 1.6969
2 2.4474 2.3675 1.6799
3 2.8883 2.3790 1.6855
4 2.5772 2.3850 1.5213

Table 2. Table of Entropies comparing LCR, DCR, and LBG
performance in TIMIT Speech data

book size for our algorithm than the DCR. This results in re-
duced bit rate for either real or synthetic data. In future, we
plan to compare our algorithm to other reordering algorithms.
We also plan to extend this algorithm to other forms of data
such as images, videos, and radar data.

5. REFERENCES

[1] R. Gray, “Vector quantization,” IEEE ASSP Magazine,
vol. 1, no. 2, pp. 4 –29, april 1984.

[2] N.M. Nasrabadi and R.A. King, “Image coding using
vector quantization: a review,” IEEE Transactions on
Communications,, vol. 36, no. 8, pp. 957 –971, aug 1988.

[3] F. De Natale, G. Desoli, D. Giusto, C. Regazzoni, and
G. Vernazza, “A framework for high-compression coding
of color images,” pp. 1430–1439, 1989.

[4] F.G.B. De Natale, S. Fioravanti, and D.D. Giusto,
“Dcrvq: a new strategy for efficient entropy coding of
vector-quantized images,” Communications, IEEE Trans-
actions on, vol. 44, no. 6, pp. 696 –706, jun 1996.

[5] Guobin Shen and M.L. Liou, “An efficient code-
book post-processing technique and a window-based fast-
search algorithm for image vector quantization,” Circuits
and Systems for Video Technology, IEEE Transactions on,
vol. 10, no. 6, pp. 990 –997, sep 2000.

[6] J. Foster, R. Gray, and M. Dunham, “Finite-state vector
quantization for waveform coding,” Information Theory,
IEEE Transactions on, vol. 31, no. 3, pp. 348 – 359, may
1985.

[7] N.M. Nasrabadi and Y. Feng, “A dynamic finite-state
vector quantization scheme,” in Acoustics, Speech, and
Signal Processing, 1990. ICASSP-90., 1990 International
Conference on, apr 1990, pp. 2261 –2264 vol.4.

[8] V Krishnan, A framework for low bit-rate speech coding
in noisy environment, Ph.D. thesis, march 2005.

5117

