
AN EM APPROACH FOR JOINT CHANNEL ESTIMATION AND CHANNEL DECODING IN
SYSTEMS EMPLOYING PHYSICAL-LAYER NETWORK CODING

Taotao Wang, Soung Chang Liew

Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong
Email: {wtt011, soung}@ie.cuhk.edu.hk

ABSTRACT

This paper applies the expectation-maximization (EM) al-
gorithm to address the problem of joint channel estimation
and channel decoding in Physical-layer Network Coding (P-
NC) systems. The use of PNC can significantly improve the
throughput of a relay network. The throughput advantage,
however, is predicated on the availability of accurate channel
estimates. For channel-coded PNC systems, a major chal-
lenge is that the maximum a posteriori probability (MAP)
channel estimation is nontrivial due to 1) the overlapping
of signals from multiple users received at the relay; and 2)
the correlations among data symbols introduced by channel
coding. In this paper, we show that an EM algorithm imple-
mented on a factor graph framework is well suited to tackle
this problem. Through iterative message passing, the channel
estimation component and the channel decoding component
in the factor graph interact to improve each other’s results
progressively. Simulation results indicate that just one EM
iteration of our algorithm can significantly improve the chan-
nel estimation accuracy as well as the BER performance of
channel-coded PNC systems.

Index Terms— EM, message passing, factor graph, PNC

1. INTRODUCTION

Recently, the research community has shown growing inter-
est in two-way relay channel (TWRC), particular TWRC that
employs physical-layer network coding (PNC). In TWRC, t-
wo terminal nodes exchange information with the aid of a re-
lay [1, 2]. PNC, originally proposed in [1], can potentially
boost throughput in TWRC by 100% compared with the tra-
ditional relaying method [2].

To accurately estimate and track time-varying channels,
it is desirable to obtain the maximum a posteriori probability
(MAP) estimate. Furthermore, it is desirable that the MAP es-
timate is based on not just the pilots, but also the data. This is,
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however, a particularly challenging problem for PNC system-
s. PNC allows the two terminal nodes in TWRC to transmit
together. The relay then transforms the received overlapped
signals into a network-coded message [1, 2]. While this PNC
operation can potentially boost throughput, the overlapped
data also complicate the task of estimating the two channels.
Adding to the complexity is the problem of channel-decoding
the overlapped signals into the target network-coded message.
In this paper, we argue that directly trying to solve the MAP
channel estimation problem and the channel decoding prob-
lem in a separate manner is not viable; a solution is found in
an expectation-maximization (EM) approach that solves the
two problems jointly in an iterative manner.

We implement the EM algorithm for PNC on a fac-
tor graph [3, 4]. In the factor graph, the components for
channel estimation and channel decoding are interconnect-
ed. Through iterative message passing between the two
components as well as between elements within the channel
decoding component, the results of channel estimation and
channel decoding improve progressively toward the optimal
solution. Simulation indicates that significant improvement
on the channel estimation accuracy can be obtained by just
one EM iteration of the proposed algorithm. As a result,
the bit error rate (BER) performance of the system can be
substantially enhanced without much additional computation
cost.

1.1. Related Works
Ref. [5] first proposed EM as an iterative algorithm for find-
ing the maximum likelihood (ML) estimates of parameters
in statistical model with hidden variables that cannot be ob-
served directly. A small extension allows the finding of the
MAP estimates also [6]. Refs. [7, 8] presented a way to map
EM computation to a message passing algorithm on a factor
graph. It is not clear from [7, 8], however, that the factor
graph representation is applicable to the specific communica-
tion problem of interest to us here. This paper provides an
affirmative answer and fills in the missing details.

There have been many previous investigations on the ap-
plication of EM in communication systems. Refs [9, 10, 11,
12, 13] applied EM to the problem of joint channel estimation
and detection/decoding in single-user systems. PNC, howev-
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Fig. 1. (a) The system model of uplink phase in TWRC; (b)
The frame structure employed by the two terminal nodes.

er, is not a single-user system. PNC is closer to multi-user
systems because signals from multiple users overlap in time.
Refs. [14, 15, 16] applied EM to joint channel estimation and
multi-user detection for CDMA systems. Channel coding was
not considered. Ref. [17] incorporated channel coding. How-
ever, the proposed method performs successive interference
cancelation (SIC) and tries to decode the individual messages
of different users using separate channel decoders. This is not
optimal for PNC systems.

Overall, there has been little multi-user EM work that in-
corporates channel coding. Furthermore, PNC channel de-
coding [18, 19, 20] is different from the separate channel de-
coding [17] because the target is to channel-decode the over-
lapped received signals into a network-coded message [18,
19, 20] rather than the individual messages. To the best of our
knowledge, ours is the first work that applies EM message
passing to PNC systems (and for multi-user systems as well)
for joint channel estimation and decoding.

2. SIGNAL AND CHANNEL MODELS OF PNC

We consider a two-phase PNC transmission scheme for
TWRC consisting of an uplink phase and a downlink phase.
In the uplink phase, two terminal nodes A and B trans-
mit packets to a relay node R simultaneously. From the
overlapped signals received from A and B, R constructs a
network-coded packet and broadcasts it to A and B in the
downlink phase. From the network-coded packet, A(B) then
recovers the packet of B(A) using its self information [2].

This paper focuses on the uplink phase because the prob-
lem of reliably transmitting the network-coded packet in the
downlink phase is similar to that in a conventional point-to-
point link. We assume both A and B have one transmit an-
tenna, and R has one receive antenna. In the uplink phase,
the received signal at R in the ith symbol duration can be ex-
pressed as

yi = hA
i x

A
i + hB

i x
B
i + ni = hT

i xi + ni, (1)

where xA
i

(
xB
i

)
is the ith transmitted symbol of node A(B);

hA
i

(
hB
i

)
is the ith fading coefficient of the channel between

A(B) and R; ni is the ith complex white Gaussian noise with

covariance σ2
n; hi

∆
= [hA

i , h
B
i ]

T; and xi
∆
= [xA

i , x
B
i ]

T. A
block diagram of the system model is shown in Fig. 1 (a),
where

{
sAj

}
and

{
sBj

}
are the source information bits from

nodes A and B. The transmitted symbols
{
xA
i

}
and

{
xB
i

}
are

generated after channel encoding, interleaving, constellation
mapping and pilot insertions at the transmitters. We assume
that A and B use the same channel encoder C and the same
interleaver when mapping their source bits

{
sAj

}
and

{
sBj

}
to

transmitted symbols. Pilot symbols are inserted periodically
among coded data symbols. The assumed frame structure is
shown in Fig. 1 (b), where P and D represent the pilot sym-
bols and coded data symbols, respectively. Each frame con-
sists of l data symbols, divided into l/b blocks. Each block
has b data symbols and two pilot symbols. The total frame
length is L = l + 2 (l/b) symbols.

We assume time-varying Rayleigh fading channels. The
fading channels hA

i and hB
i are modeled as two independent

first-order Gauss-Markov processes [21, 22]:
hA
i = αhA

i−1 + zAi hB
i = αhB

i−1 + zBi , (2)
where zAi and zBi are complex white Gaussian processes with
zero mean and variances

(
1− σ2

)
σ2
A and

(
1− σ2

)
σ2
B, and

α is a correlation coefficient tied to the channel coherence
time [22].

3. APPLICATION OF EM THEORY TO PNC

3.1. Objectives of EM PNC Receiver
Let h be the set containing all channels {hi}. Similarly, x is
the set of all transmitted symbols {xi}, and y is the set of all
received signal vectors {yi}. To the relay, both h and x are
unknowns to be estimated and decoded.

In a conventional receiver, h is first estimated, followed
by the decoding of codewords x, and network coding after
that. Pilots, corresponding to known xi at specific ith posi-
tions, are used for the estimation of h. This estimate of h is
then substituted into (1) for the decoding of the unknown xi.
This estimate of h makes use of only the pilot parts, and does
not exploit useful information contained in the data part of x.
To fully make use of all the received symbols, including pilots
and data, the receiver could perform the following:
Step 1 (channel estimation): Find MAP estimate ĥMAP =

argmax
h

{log p (h |y )} = argmax
h

{
log

∑
x
p (x,h |y )

}
;

Step 2 (channel decoding): Find p(x|ĥMAP,y)
Step 3 (network coding): Compute the network-coded
source message

{ ̂sAj ⊕ sBj

}
based on the channel decoding

output from Step 2 [2].
This is the PNC receiver with optimal channel estimation. If
the channel coefficients were perfectly known (as assumed
in previous works [18, 19, 20]), then Step 1 is not needed.
The operations of Step 2 and Step 3 can be combined to form
the so-called Channel-decoding-Network-Coding (CNC) pro-
cess, an essence of channel-coded PNC systems [2, 18]; a
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subtlety of CNC as compared to conventional channel decod-
ing is that the goal is not to decode the individual source mes-
sages from A and B, but a network-coded message that mixes
the two source messages (we refer the interested readers to
[2] and references therein for details on CNC). Similarly, if
the MAP estimation in Step 1 could be achieved, then Step 2
and Step 3 could be implemented using the conventional CNC
methods substituting ĥMAP as the channel coefficients. Un-
fortunately, this is not viable because the exact MAP estimate
of h is difficult due to the complexity of the computation of∑

x p (h,x |y ). A difficulty, for example, is that the symbols
in x are correlated due to channel coding; in addition, signals
of the two terminal nodes are overlapped in y.

EM tries to find ĥMAP iteratively rather than attacking
the problem directly. The objective of EM is still to obtain
the MAP estimate of h as in Step 1. However, EM combines
Step 1 and Step 2 in an iterative manner to refine the estimate
of h and the decoding of the network-coded message. In the
following, we first describe the procedure of the EM algorith-
m and then present its implementation on the factor graph. In
the terminology of EM, y is the observed data, x is the hidden
data, and h is the unknown parameters. The kth iteration of
EM consists of an E-step (expectation) and an M-step (maxi-
mization) as follows [6]:
E-step: Given the previous estimate ĥ(k−1) , compute the
conditional expectation

Q
(
h
∣∣∣ĥ(k−1)

)
=

∑
x

p
(
x
∣∣∣y, ĥ(k−1)

)
log p (y,x|h) ; (3)

M-step: Then, compute ĥ(k) by

ĥ(k) = argmax
h

[
Q
(
h
∣∣∣ĥ(k−1)

)
+ log p(h)

]
. (4)

The E-step in (3) can be broken down as follows. First, com-
pute p

(
x
∣∣∣y, ĥ(k−1)

)
from y and ĥ(k−1). This computation

is similar to Step 2 above, with ĥ(k−1) replacing ĥMAP. If
the algorithm were to stop at iteration k, we could simply
go to Step 3 to obtain the network-coded message based on
p
(
x
∣∣∣y, ĥ(k−1)

)
. Otherwise, the E-step continues and uses

p
(
x
∣∣∣y, ĥ(k−1)

)
to compute Q

(
h
∣∣∣ĥ(k−1)

)
as in (3). Af-

ter that, the M-step finds a new estimate of h as in (4). The
schematic of this EM PNC receiver is shown in Fig. 1 (a).

3.2. Implementation of EM PNC on Factor Graph
We next consider the factor graph implementation of the EM
PNC receiver. Ref. [8] explained how to transform EM com-
putation to a factor graph implementation. It is not clear, how-
ever, that the assumptions in [8] on the functional forms of the
parameter and variable probabilities are valid for our specific
problem. Here, we give a derivation tailored to the channel-
coded communication systems.

For factor graph implementation, we modify Step 2 in
Section 3.1. Instead of finding p(x|ĥMAP,y) for channel

decoding, we find p(xi|ĥMAP,y) for each and every i. There
are two reasons for this. First, for many advanced channel
codes (e.g., LDPC, Turbo code), the decoding process finds
p(xi|ĥMAP,y) rather than p(x|ĥMAP,y), because finding
p(x|ĥMAP,y) for all possible codewords x is generally a
difficult computation-intensive problem. Second, and very
importantly, our EM procedure only requires p(xi|ĥMAP,y)

and not p(x|ĥMAP,y), as detailed below.
A key to factor graph implementation is to factorize

p (y,x |h ) in (3) and p (h) in (4). For p (y,x |h ), we write

p (y,x |h ) = p (y |x,h ) p (x) =
IC2 (x)

∏
i p (yi |xi,hi )

|C2|
,

(5)
where C2 is the valid set of x (we assume all codewords are
equally likely) and IC2 (x) is a indicator function defined as:
IC2 (x) = 1 if x ∈ C2; IC2 (x) = 0 if x /∈ C2. Note that we
have used (1) in (5) in the factorization of p (y,x |h ). Sub-
stituting (5) into the Q function defined in (3) and dropping
the term − log

∣∣C2
∣∣, which is independent of h and therefore

does not matter as far as the M-step is concerned, we have

Q
(
h
∣∣∣ĥ(k−1)

)

=
∑
i

∑
xi

log p (yi |xi,hi )

p(xi|y,ĥ(k−1),C2 )︷ ︸︸ ︷∑
x1···xi−1
xi+1···xL

p
(
x
∣∣∣y, ĥ(k−1), C2

)
,

(6)
where p

(
xi

∣∣∣y, ĥ(k−1), C2
)

is the a posteriori probability
(APP) that can be computed using the sum-product rule based
message passing decoding algorithm [4] on the factor graph
of the given channel code C2. A subtlety here for the PNC
system is that the channel encoder C2 is a ”virtual channel
encoder” which takes the original information source symbols
from nodes A and B

{
sAj , s

B
j

}
as inputs, and output {xi} as

coded symbols (see [2] for details). We define the symbol-
wise Q function as

Qi

(
hi

∣∣∣ĥ(k−1)
)

∆
=

∑
xi

log p (yi |xi,hi ) p
(
xi

∣∣∣y, ĥ(k−1), C2
)
.

(7)
With complex white Gaussian noise, the above log p (yi |xi,hi )
as a function of the variables xi and hi can be obtained in
closed form. We see that once p

(
xi

∣∣∣y, ĥ(k−1), C2
)

is com-

puted, Qi

(
hi

∣∣∣ĥ(k−1)
)

as a function of hi can be obtained

by the weighted sum of p
(
xi

∣∣∣y, ĥ(k−1), C2
)

over different
possible values of xi. The overall Q function is the sum of
symbol-wise Q functions:

Q
(
h
∣∣∣ĥ(k−1)

)
=

∑
i

Qi

(
hi

∣∣∣ĥ(k−1)
)
. (8)

Using (8), the M-step in (4) is equivalent to

ĥ(k) = argmax
h

(
p (h) ·

∏
i

eQi(hi|ĥ(k−1) )
)
. (9)
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To see what will happen in the M-step, let us assume the
Gauss-Markov channel model (2) and factorize p (h) as

p (h) = p (h1)
∑

i=2
p (hi |hi−1 ). (10)

Substituting (10) into (9), we find that the M-step can be im-
plemented by (i) constructing the factor graph according to
(10); (ii) regarding eQi(·) as an input message to the variable
node hi for each i on the constructed factor graph; and (iii)
performing the max-product rule based message passing algo-
rithm [4] over the factor graph to solves (9). Since the input
messages

{
eQi(·)

}
and the check functions of the nodes on

the factor graph representing (10) are all of exponential form,
the max-product algorithm that solves (9) can be implement-
ed using Gaussian message passing [4].

3.3. Initialization and Termination of EM Iteration
EM iteration needs to be bootstrapped with a good initial
point; otherwise there is no guarantee that the algorithm will
converge to the global maximum [23]. For each block, we ob-
tain the initial ĥ(0) by minimum mean square error (MMSE)
estimation [24] using the pilot symbols. Then, the channel
coefficients within each data block are simply set to the esti-
mated channel coefficient of the closest pilot.

We repeat the E-step and M-step iteratively. When it-
eration k exceeds a maximum limit K, we terminate EM
and use the virtual channel decoder in the factor graph to
compute the final decoding results p

(
xi

∣∣∣y, ĥ(K), C2
)

and

p
(
sAj , s

B
j

∣∣∣y, ĥ(K), C2
)

. Then, the network-coded source
message is obtained bŷsAj ⊕ sBj = argmax

s

∑
sAj ,sBj :sAj ⊕sBj =s

p
(
sAj , s

B
j

∣∣∣y, ĥ(K), C2
)

(11)
for all j. After that, the relay channel-encodes the network-
coded source message and broadcasts the channel-coded mes-
sage to nodes A and B in the downlink phase.

4. SIMULATION RESULTS
For performance evaluation, we define three different set-
tings: (i) our proposed EM PNC receiver; (ii) PNC receiver
with one-shot MMSE channel estimation using pilots only
(this is equivalent to our EM PNC receiver with K = 0); (iii)
an EM receiver modified from the receiver in [17] (specifical-
ly, after decoding the two individual source messages

{
ŝAj

}
,{

ŝBj
}

using the EM SIC in [17], we perform network coding
as

{
ŝAj ⊕ ŝBj

}
). We assume the channels of both terminal

nodes have the same average power σ2
A = σ2

B and channel
correlation coefficient α = 0.99. BPSK modulation is used
by node A and B. The regular Repeat Accumulate (RA) code
with coding rate 1/3 is employed. Each frame has 1024 infor-
mation bits (thus 3072 channel-coded BPSK data symbols).
We insert two pilots for every block with block size b = 16.
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Fig. 2. Simulation results: (a) BER; (b) MSE.

This corresponds to a pilot load of 2/18 = 11.1%. We adopt
orthogonal pilot patterns for the two terminal nodes wherein
P1 = 1 P2 = 1 for node A and P1 = 1 P2 = −1 for node
B. All presented simulation results are obtained by averaging
over 104 pairs of frames.

We evaluate the BER of the network-coded messages and
the mean square error (MSE) of the estimated channels. Fig.
2 (a) presents the BER of the three receivers. Eb is the en-
ergy per information bit. #RA is the number of RA channel
decoding iterations for each channel estimation iteration. For
fair comparison, let us focus on the performance of receiver
(i) when #RA = 5,K = 1 and the performance of receiver
(ii) when #RA = 10: i.e., the total numbers of channel de-
coding iterations are the same in the two cases. We see that
for BER performance, receiver (i) has about 2 dB gain over
receiver (ii). For receiver (iii), satisfactory performance can-
not be obtained. Fig. 2 (b) presents the MSE of the estimated
channels. We can clearly see that (i) does give more accurate
channel estimation than (ii) and (iii). We can also observe
that the first EM iteration in (i) can already extract most of
the gain in MSE.

5. CONCLUSION

We have proposed an EM factor-graph framework for solving
the joint problem of channel estimation and channel decoding
in PNC systems iteratively. In general, performance improves
with the number of iterations. Our simulation, however, indi-
cates that just one EM iteration may be enough to extract most
of the gain in MSE performance. In terms of BER perfor-
mance, in a setting where the pilot load is 11.1%, a 2dB gain
is obtained with just one iteration. The need for just one iter-
ation makes the approach more viable for a practical system
in which the computation must be performed in real-time.
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