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ABSTRACT

It is well known that non-binary LDPC codes outperform the
BER performance of binary LDPC codes for the same code
length. The superior BER performance of non-binary codes
comes at the expense of more complex decoding algorithms
that demand higher computational power. In this paper, we
propose parallel signal processing algorithms for performing
the FFT-SPA and the corresponding decoding of non-binary
LDPC codes over GF(q). The constraints imposed by the
complex nature of associated subsystems and kernels, in par-
ticular the Check Nodes, present computational challenges re-
garding multicore systems. Experimental results obtained on
GPU for a variety of GF(q) show throughputs in the order of
2 Mbps, which is far above from the minimum throughput re-
quired, for example, for real-time video applications that can
benefit from such error correcting capabilities.

Index Terms— Non-binary LDPC codes, GF(q), Com-
munications, Error correcting codes, GPU

1. INTRODUCTION

Robert Gallager proposed Low-Density Parity-Check (LDPC)
codes in 1962 [1], which allow capacity-approaching Bit Er-
ror Rate (BER) performances. While binary LDPC codes are
defined over a GF(2), non-binary LDPC codes, defined over
GF(q), in particular the binary extension field, i.e. ¢ = 2™
and m > 1, are known for having superior BER performance
for the same code parity-check matrix binary image [2].
Mainly due to high computational power requirements on
the decoder and to large memory demands imposed by the al-
gorithm, few applications already incorporate the use of non-
binary LDPC codes, in spite of their high potential. Com-
pared to its binary counterpart, the conventional algorithms
for decoding non-binary LDPC codes are more complex and
require a substantial higher amount of memory for storing
messages. Two application examples are Quantum Key Dis-
tribution (QKD), a cryptographic primitive that applies quan-
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tum mechanics for establishing secure communications, and
video transmission systems that are capable of working over
the erasure channel under severe Signal-to-Noise Ratio (SNR)
conditions.

Although we have assisted to the recent development
of binary LDPC decoders on Graphics Processing Units
(GPUgs) [3, 4, 5, 6, 7, 8], the importance of the non-binary
case seems to be underestimated yet. In this paper, we pro-
pose a parallel decoder based on the Fast-Fourier Transform
Sum-Product Algorithm (FFT-SPA) that exploits the mul-
tithread capabilities of the GPU to parallelize the intensive
computation of Variable Nodes (VNs) and, more importantly,
of Check Nodes (CNs). We propose four major approaches to
balance processing and accelerate their decoding performance
on GPUs: i) we show that the size of data structures involved
allows optimizing the Tanner graph representations and Fast-
Fourier Transforms (FFTs) indexing accesses by exploiting
the shared and constant memories of the GPU system, which
are fast and tightly coupled to the processing cores, instead of
using the slow global memory; ii) we perform a GPU-aware
optimization of the more intensive kernels, namely the FFT,
mainly based on the intensive use of register and shared mem-
ory; iii) in order to minimize the number of FFT calls, which
are computationally intensive, we compute three sub-kernels
(normalization of probability distribution, syndrome calcula-
tion and decoded bits decision) in the Fourier domain; and iv)
we use multicodeword data-parallelism to increase the level
of workload distribution of the kernels and, therefore, allow
the hardware scheduler to have more opportunities to mask
memory accesses with computation [8].

2. NON-BINARY LDPC CODES AND DECODING
COMPUTATIONAL COMPLEXITY

Non-binary LDPC codes are defined by a parity-check matrix
H in GF(q), composed by M rows and N columns. The Tan-
ner graph [9] defines each row in H as a CN and each column
as a VN. CNs and VNs are connected when a non-null ele-
ment exists in H. The edges sets C(v) and V' (c) define the
edges connected to CN,, and to VN_, respectively, and their
cardinality the CN and VN weight, denoted by d. and d,.
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2.1. Decoding Algorithms Overview

The Sum-Product Algorithm (SPA) can be generalized to
GF(q), leading to a higher complexity for the VN process-
ing and in particular for the CN processing that follows a
O(M x d. x 29%9) numerical complexity, due to the con-
volution term [10]. Fortunately, through the use of the FFT
transform, convolutions can be expressed in terms of prod-
ucts, and the overall numerical complexity of the SPA can
be lowered to O(M x d. x g x 27) [10]. Other decoding
algorithms address the CN processing computational com-
plexity and try to ameliorate it, such as the Log-Fourier
SPA (LFSPA), Extended Min-Sum (EMS) algorithm and
Min-Max algorithm [10, 11, 12].

2.2. FFT-Sum Product Algorithm

The SPA can be resumed in four steps: i) the probability mass
function (pmf) p,(z) is computed by the demodulator for all

the received symbols, and all m,,. messages are initialized as
in (1); ii) the CN processing reads the mg)lc) messages from

(i41)

their adjacent VNs and computes m¢, ~ messages accord-

ing to (2); iii) the VN processing reads the mgfl)

from their adjacent CNs and computes mq(fcﬂ)
cording to (3); iv) an a-posteriori likelihood m
inferred from the mq(fcﬂ) messages (4) and hard-decoded to
the symbol with highest likelihood (5). The algorithm iter-
atively executes steps ii) to iv) until a maximum number of

iterations is reached or a valid codeword is decoded:

messages
messages ac-

*(+1) can be

po(a) = m{D (z) = p(v, = 2ly,) (1
ml@) = > plze=0v) [ my2) @
Vivy =T v eV(e)\e
mg;lc) (:E) = kyeDo (ZE) H mc’v(x) (3)
ceC(v)\¢'
kye <= mefc)(w) =1
m* (@) = Kopo(@) [ muel@) “
ceC(v)x
K, < Zm*g)(x) =1
O, = arg max{m”*,(z)}, )

where (i) represents the i-th iteration. The convolution term
in (2) can be simplified by moving to the Fourier domain,
replacing (2) with (6). This involves computing the FFT of
the m,. messages prior to the CN processing and the FFT !
of the m., messages afterwards.

m{)(x) = FFT~! [T FFT{m, ()} (6)
v eV(e)\e

Another useful property of the FFT usage is the ability to nor-
malize the m,,. messages a-posteriori, namely in the CN pro-

cessing at iteration (i + 1), instead of doing it in the VN pro-
cessing at iteration (7). Since the first term of the FFT is the
sum of all ¢ likelihoods, i.e. k.., each output element of the
FFT is divided by the first element.

Before and after the main CN processing (2) and (6), a
pmf permutation and de-permutation is required, since VNs
participating in a parity-check equation are multiplied by ele-
ments in GF(q) [13]. One of the benefits associated with the
FFT-SPA decoding is that all arithmetic operations are defined
in R [13]. The only dependency on GF(q) arithmetic is in the
syndrome computation, which is independent of the decoding
algorithm.

3. PROPOSED PARALLEL NON-BINARY LDPC
DECODER

In this section the proposed FFT-SPA implementation and op-
timizations on the GPU are detailed.

Efficient Fast Hadamard Transform: The domain change
operated in the CN processing is possible by using the Fast
Hadamard Transform (FHT). The paramount importance of
the use of the FHT to reduce the numerical complexity of CN
updating is well illustrated in [10, 14]. However, the imple-
mentation details of the FHT present challenges in the context
of the non-binary LDPC decoding problem, for the GPU ar-
chitecture, especially for higher order GF(g), such as GF(256)
and GF(128). We are thus motivated into developing a FHT
for the non-binary LDPC decoding problem, efficiently map-
ping the algorithm onto the GPU shared memory architecture
and suiting the LDPC decoder data structures. In [15], the
authors have defined a GF(q) radix-2 FHT, which does not
exploit the shared memory capabilities of the GPU engine,
henceforth designated as FHTg. For the latter purpose, a
GF(256) radix-2 FHT was devised, which exploits the shared
memory architecture and minimizes the number of shared
memory bank conflicts [16], designated FHT256. However,
shared memory bank conflicts can be completely eliminated,
by employing radix-n. FHTs [17] tuned to the underlying
GPU memory engine, designated as FH7o. Due to the fi-
nite field representation, input elements must be reordered.
For instance, for GF(8) generated by the primitive polyno-
mial f(x) = 2% + z + 1, elements would be reorganized
as follows: (1,a,0%,a3,a% 0% a%) — (0,1,a,0?%,a +
1,62 + a,0® + o + 1,02 + 1), which in binomial form
can be written as (000,001, 010,100,011,110,111,101)s =
(0,1,2,4,3,6,7,5)10, where « is the primitive element, i.e.
f(a) = 0. Naturally, the output elements are organized to
revert the former order.

We have integrated the efficient FHTo for GF(128) and
GF(256) on the proposed decoder, since LDPC decoding over
such high order Galois fields is much more complex than over
lower orders. The former uses a mixed radix FHT, deploying
a stage in radix-8 followed by two stages in radix-4, while
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Fig. 1. FFT-SPA employment of the GPU memory hierarchy,
also showing the radix-4 and radix-8 FHT. The most inten-
sive FHT kernel takes full advantage of the memory hierarchy
of the GPU, by exploiting the fast register space and shared
memory for computation and data buffering.

the latter deploys a radix-4 implementation. Both kernels rely
on 64 thread blocks not only to keep a reasonable number of
threads active in the GPU engine, but also to limit the shared
memory usage, a constraint to the number of active threads.
Regardless of the design dimension, the developed FHTo re-
organizes data according to the polynomial indexing at the in-
put and at the output, given by the primitive polynomial, and
also requires a dyadic to sequential reorganization, since its
outputs come in dyadic ordering. The FHTo for GF(128) and
GF(256) are depicted in Figure 1. A main design drive of the
FHTo is to limit the usage of global memory to a minimum,
thus using the shared memory to cache any intermediate val-
ues and the fast register space for computation.

Data Layout: One of the key challenges in LDPC de-
coding on the GPU architecture is how to devise efficient
memory layouts and data structures which maximize the
GPU memory engine bandwidth. The Tanner graph imposes
non-sequential memory transactions between the messages
exchanged between VNs and CNs [6]. However, if the binary
image of the LDPC code is of relatively small dimensions,
we are able to index the message-passing between nodes
through Lookup Tables (LUTs) fitting in the 64KB constant
memory. In the proposed decoder, a row-major transfor-
mation of the non-null elements in H suffices to index the
loading and storing of m,, and m,,. messages, respectively.
This leaves the more complex CN processing without re-
quiring LUT-reading of memory locations. Moreover, for
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GF(q) pmf, the requirement to store ¢ likelihood values
does not add any relevant complexity to the data layout.
Elements are stored contiguously, with each consecutive g
elements organized in ascending primitive element order , i.e.
mcv(x) = {mcv (0)7 mcv(1)7 e amcv(aqiz)}-

Coalesced Data Representation and Parallelism: Data
representation is critical for LDPC decoding. Using GPU
processors, quantization effects can be avoided, since they
are optimized for IEEE-compliant floating-point arithmetic,
that allows achieving peak bandwidths in the TFLOPs range.
Thus, likelihoods are represented in single precision floating-
point, and in order to fully exploit the bandwidth provided
by the GPU memory engine we have defined an intra-thread
data-parallelism level of 4, i.e. 4 codewords are loaded into
the GPU at once. This way, we are able to achieve fully
coalesced 128-bit aligned memory accesses, which help to
overlap memory latency with computation, a key factor for
extracting the best performance.

Algorithm 1 GF(q) FFT-SPA decoder on GPU

: (construct_from_file) Load LDPC code and interleaver

: (InitEncoding) Load arithmetic LUTS for GF(2"*) and FHT LUTs

: (CPU to GPU memory transfer) Copy LUTs and interleaver

: (Encoding) Generate a new codeword and random noise

: (CPU—GPU) Copy codeword and random noise from the CPU to the
GPU

AW =

6: (gpu_initialize_message) Transmit codeword through AWGN channel
7: (init_mcv) Initialize mc,, messages
8: while ¢ - H # 0 or maximum iterations reached do
L R R (Start soft-decoding)
10: (multV) Execute the VN kernel
11: (edge) Permute m, . messages
12: (FHT) Execute the FFT for m,. messages
13: (multC) Execute CN kernel on the Fourier-domain
14: (FHT) Execute the FFT for m., messages
15: (inv_edges) De-permute the m,, messages
160 ---------- (End soft-decoding, start hard-decoding)
17:  (deviceP_VN) Compute the a-posteriori m},, messages

18:  (FHT) Execute the FFT for mj, . messages

19: (decideB) Hard-decode the m ;. messages into binary g-tuples
20: (decideS) Convert the binary g-tuples into GF(q) symbols

1 e (End hard-decoding, start parity-check)

22: (decideSynd) Compute the syndrome vector

23: (GPU—CPU) Copy syndrome from the GPU to the CPU

24: EvaluateSyndrome Test if syndrome is the null vector.

25: eeeee----- (End parity-check)

26: end while

4. EXPERIMENTAL RESULTS

The proposed GPU FFT-SPA decoder, whose pseudo-code
implementation is defined in Algorithm 1, was tested for a
numerous set of parameters, which enables us to compare the
different optimization steps carried out, and their impact on
the overall performance of the decoder.



Table 1. Execution time and throughput of the FFT-SPA LDPC decoder for variable GF(q) and different FHT implementations.
Numerals marked with * represent values obtained for the FHT256, 1 are obtained for the FHTo and all others for the FHTq.

[ Galois Field [ GF(32) [ GF(64) [ GF(128) [ GF(256) |
Iterations 5 10 15 5 10 15 5 10 15 5 10 15
026 | 0.I3 0.08
Throughput [Mbivs] | 1.63 | 0.82 | 055 | 078 | 039 | 026 | *4% | 21 | OM e 577w ose
3341 | 1.67f | LIIf | 2.37f | 1.20f | 0.79f
4827 | 9643 [ 14516
Execution Time [ms] | 7.51 | 1493 | 2238 | 1580 | 3155 | 47.41 | 2201 | 9802 | 8688 It o ooe 2381
3.67f | 7.36f | IL.OIf | 5.20f | 10.28f | 15.51f

4.1. Apparatus

The decoder was profiled on an Asus P6T7 WS with an Intel
17 950 Central Processing Unit (CPU), a Tesla C1060 Nvidia
GPU and 12GB of RAM, running GNU/Linux 3.4.4 and
CUDA 5.0. The decoder was tested for ¢ € {32, 64, 128,256}
for a regular (2,3)-LDPC code with a binary image of
N = 384 VNs and M = 256 CNs [2]. The execution times
profiled measure only the soft-decoding kernels highlighted
in Algorithm 1, and were obtained with CPU timers.

4.2. Throughput performance of non-binary LDPC de-
coders on the GPU

Experimental results for the relative weight of the developed
GPU kernels are shown in Table 2. It can be seen that the
FHTq implementation consumed 94.3% of the kernels ex-
ecution time for GF(256). A significant improvement was
achieved by using the FHT256, which lowered the FHT
weight to 65.1%. The optimized FHTo further lowered it to
45.4% of the total execution time.

By using the FHT256 and the FHTo, throughput is raised,
at 5 iterations, from 0.26 Mbit/s to 1.52 and 2.37 Mbit/s, re-
spectively for GF(256). For the GF(128) case, the throughput
at 5 iterations was elevated from 0.42 Mbit/s to 3.34 Mbit/s.
This is equivalent to speedups of 9.11x and 7.95x when com-
pared to the FHTq and the FHTo.

Table 2. Relative weight (in percentage) of the FHT imple-

mentation in the execution time for GF(256).
[ Kemnels | FHTg | FHT256 | FHTo |

FHT 94.3 65.1 454
multC 1.7 10.6 16.3
multV 1.6 10.1 15.8
edge 1.2 7.2 11.4
inv_edges 1.2 7.0 11.1

5. RELATED WORK

To the best of our knowledge, this is the first FFT-SPA imple-
mentation for GF(g), and has been preceded by two works on
non-binary LDPC decoding on GPUs. Very recently, Wang
et al. [14] have developed a GPU-based Min-Max LDPC

decoder for GF(q). Their OpenCL implementation explores
similar design space guides. However, given the specifica-
tions of the author’s selected algorithm, some optimizations
carried out in [14] are orthogonal to those proposed in this
paper. Namely, the Forward and Backward optimization is
applicable only to the Min-Max algorithm, as the FHT is
to the FFT-SPA. Romero and Chang [18], present a non-
binary LDPC decoder on GPU, where a sequential decoder
exploits the parallelism inherent in the GF(q) representation.
This work is tightly attached to the efficient development
and mapping of a decoding schedule, and finding a trade-off
between the lower throughputs per iteration inherent to se-
quential decoders and the lower number of iterations required
to successfully decode a sequence. Hence, we find that the
related works [14, 18] and the work proposed in this paper
contribute to the non-binary LDPC decoding field on parallel
multicore architectures in complementary ways.

6. CONCLUSIONS

In this paper we propose an efficient GPU FFT-SPA decoder
for LDPC codes defined over GF(q), which exploits several
aspects of the GPU architecture. Namely, efficient coalesced
data structures have been devised which maximize the mem-
ory engine delivered bandwidth through proper alignment
and higher levels of data-parallelism; a non-binary LDPC-
oriented FHT has been developed which increased the decod-
ing throughput to the Mbit/s range; efficient Fourier domain
simplifications have been carried out in the FFT-SPA which
reduce the complexity of the CN processing. The achieved
decoder throughput and execution time prove the suitability
of the GPU engine to the non-binary LDPC decoding prob-
lem. Moreover, the FFT-SPA achieves decoding throughputs
which are competitive with results found in the literature,
even considering that in our case the decoding complexity is
superior and that higher orders of GF(q) have been tested.
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