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ABSTRACT
We propose a low-complexity vector precoding (VP)

scheme for the downlink of multi-user multiple input mul-
tiple output (MU-MIMO) systems. Instead of performing a
full sphere search to maximize the receive signal to noise
ratio (SNR), the search for the perturbation vectors finishes
once a threshold SNR value is reached, thus saving significant
computational burden at the transmitter. This threshold is
determined by the quality of service (QoS) requirements of
the mobile users. To evaluate the advantages of the proposed
technique compared to VP, we analytically calculate its com-
putational complexity in terms of the volume of the associated
search space. The results show that the proposed thresholded
VP (TVP) offers a significantly reduced complexity compared
to VP.

Index Terms— Vector precoding, sphere encoding, com-
plexity reduction, multi-user MIMO, non-linear precoding

1. INTRODUCTION

The pursuit of cost- and power-efficient mobile units has stim-
ulated a growing interest in precoding schemes for the down-
link MU-MIMO transmission. Capacity achieving non-linear
dirty paper coding (DPC) techniques [1, 2] are in general im-
practical as they assume codewords with infinite length for the
encoding of the data. Their suboptimal counterparts [3, 4] of-
fer a complexity reduction at a comparable performance. Still
however, the associated complexity is prohibitive for their de-
ployment in current communication standards. On the other
hand, linear precoding schemes based on channel inversion
[5, 6, 7] offer the least complexity, but poor performance.

A performance improvement is provided by vector precod-
ing (VP) [8], by judiciously perturbing the data vectors at the
transmitter. This results in much enhanced receive signal to
noise ratios (SNRs) compared to linear precoding. The im-
proved performance however, comes at the expense of an in-
creased complexity since the search for the optimal perturba-
tion vectors is an NP-hard problem, typically solved by sphere
search algorithms at the transmitter.

∗This work was supported by the Royal Academy of Engineering, UK and
EPSRC grant EP/I037156/1.

The complexity of various sphere search techniques has
been studied in [9]-[10] (among others) in terms of search
nodes visited and search lattice volumes. A number of tech-
niques have been proposed towards reducing the complexity
of VP precoding (e.g. [11]-[13]). In [11] a search over a re-
duced lattice is proposed, based on empirical observations of
the relation between the instantaneous symbols and the opti-
mum perturbation vectors. Further work in [12] has proposed
the decoupling of the perturbation optimization in the real and
imaginary domain of the data symbols thus offering a lower
complexity compared to the joint optimization approach.

In this paper we propose a thresholded approach, where
we apply a threshold to the VP optimization and a resulting
search-termination threshold to the sphere encoder. The aim is
to reduce the associated precoding complexity by reducing the
number of nodes that need to be visited by the sphere encoder,
for a given target performance. The threshold value is directly
determined by the operational SNR requirement of the mobile
users. To do this we adapt the Schnorr-Euchner search (SE) al-
gorithm [10] by introducing a threshold on the required weight
(precoded signal norm) of the optimal node. If this threshold
weight is met, the search is terminated at a reduced number of
nodes visited.

It should be noted that the proposed can be applied on
top of other complexity reduction techniques to further reduce
complexity by means of a thresholded search, compared to the
case where the full sphere search is carried out. However, to
keep the focus of this work on the central idea we only use
conventional VP [8] as the reference for comparison.

2. SYSTEM MODEL AND VECTOR PRECODING

Let us assume a downlink system with a single BS equipped
with N transmit antennas and M ≤ N single-antenna users.
The received signal is given as

r = H · x + w (1)

where r ∈ CM×1 and H ∈ CM×N is the channel matrix.
Also, x ∈ CN×1 is the transmit symbol vector w ∈ CM×1 ∼
CN (0, σ2IM ) is the vector of the additive white Gaussian
noise (AWGN).
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VP precoding employs a channel inversion precoding ma-
trix and applies a perturbation on the transmitted symbols such
that the signal content at the receiver is maximized. The trans-
mitted signal is given by [8]

x =

√
P

β
H†(u + τ l?) (2)

where H† is the Moore-Penrose generalized inverse of matrix
H, u ∈ CM×1 is the data symbol vector,

β = ||H†(u + τ l?)||2 (3)

is the transmit power scaling factor so that E{||x||2} = P and
l? ∈ CM×1 is the selected perturbation vector with integer
entries. Also τ = 2|c|max + ∆ where |c|max is the absolute
value of the constellation symbol with the maximum magni-
tude and ∆ denotes the minimum Euclidean distance between
constellation symbols. To maximize the signal component in
the received symbols or equivalently minimize the noise am-
plification, the perturbation vectors l? are chosen as

l? = arg min
l∈ZM+jZM

||H†(u + τ l)||2 (4)

For complex symbol alphabets, the optimization in (4) is
a 2M -dimentional real integer lattice problem, known to be
NP-hard. Sphere search techniques are typically employed to
solve the minimization, the complexity of which is known to
grow exponentially with M . Based on the above expressions
the received symbol vector can be calculated as

r =

√
P

β
(u + τ l?) + w (5)

At the receiver, the signal is first scaled back to eliminate the
effect of the transmit scaling factor and then fed to a modulo
operator to remove the perturbation quantity τ l?. The output
of the modulo stage is given as

y = modτ

[√
β

P
r

]
= modτ

[
u + τ l? +

√
β

P
w

]
= u + n

(6)
where

modτ (x) = x−
⌊
<(x) + τ/2

τ

⌋
τ − j

⌊
=(x) + τ/2

τ

⌋
τ (7)

is the modulo operation with base τ ,<(x) and=(x) denote the
real and imaginary parts of x respectively. Also, bxc denotes
the maximum integer less or equal to x and vector n in (6)
denotes the equivalent noise vector at the receiver after the
scaling and modulo operation.

3. PROPOSED LOW COMPLEXITY VECTOR
PRECODING

Typically, the precoder is operating under a threshold perfor-
mance requirement from the mobile users. Accordingly, as-
sume that the received SNR γ excluding the modulo operation
is required to be greater or equal to a certain threshold γt

γ =
Eb
N0
· P
β
≥ γt (8)

where Eb, N0 are the per bit power and noise power respec-
tively. Denoting the complexity of the precoder as C, we for-
mulate the optimization problem as

minC(βt)

s.t.c. β(l?) ≤ Eb
N0
· P
γt

, βt (9)

where we have introduced a signal norm threshold βt based
on the SNR requirement of (8). Hence, the above optimization
minimizes the precdoing complexity, subject to a receive SNR
threshold. Since there is no exact closed form expression of
the complexity associated with VP, the optimization cannot
be solved directly. To solve the optimization, we adapt the
sphere encoder such that the search is terminated once the first
perturbation vector that is found to satisfy the weight threshold
βt. In the case when the instantaneous channel is such that the
threshold can not be met, the perturbation corresponding to
the minimum weight is selected according to the conventional
sphere encoding process. The selected perturbation vector is
therefore given as

l? =

{
lt, if ∃lt : ||H†(u + τ lt)||2 ≤ βt

arg min
l∈ZM+jZM

||H†(u + τ l)||2, otherwise (10)

Apart from the above modification on the sphere search,
the transmit and receive processing for TVP is identical to the
one of VP given in (2)-(7).

4. COMPLEXITY ANALYSIS

It has been observed in [10] and references therein that the
complexity of the SE search is proportional to the volume of
the region being searched in the lattice space. At the k-th
search layer of the tree search this volume is a hypersphere
with maximum radius αk. A geometrical illustration of this is
shown in fig. 1(a) for a 2-dimensional lattice. Here the dots
represent the lattice points and the area inside the outer cir-
cle denotes the area of candidate points searched, based on the
search radius.

For the proposed thresholded SE (TSE), due to the applied
threshold, the search is carried out to the point where βt is
satisfied and no further lattice points closer to the target point
need to be evaluated. The equivalent search space for the 2-
dimentional lattice is denoted by the shaded area in fig. 1(b).
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Fig. 1. Geometrical representation of the 2-dimensional integer-
lattice sphere search problem for a) conventional sphere search and
b) thresholded sphere search

It is therefore clear that, the search volume associated with
TSE is the volume of the hypersphere with radius αk less the
volume of the hypersphere with radius

√
βt. When the termi-

nation threshold βt is too strict and a full SE search is carried
out, this signifies that the equivalent volume of the threshold
hypersphere is zero, as it contains zero lattice points. Note
that, since the TSE terminates once the first lattice point satis-
fying the threshold is found, the area shown in fig. 1(b) con-
sists of an upper bound of the actual volume searched for TSE.
Typically TSE will only search a part of this volume until the
first lattice point on the surface of the inner hypersphere is met.

In the following, we use these key observations to attain a
complexity evaluation for TSE, following the methodology of
[9, 10]. We use rn,m to denote the n,m-th element of matrix
R of the QR decomposition QR(−H†τ).

Theorem 1 Denote the search volume for the k-th search
layer with radius αk as Vk(αk). For the complexity C(βt)
associated with TSE in a M -dimensional lattice we have

C(βt) ≤ C ∝ V =
[
VM (∞)− VM (

√
βt)
]+

(11)

for which

[
VM (∞)− VM (

√
βt)
]+
≤
πM/2

[(
φM

2

)M
− βM/2

t

]+
Γ(M/2 + 1)

(12)
where φk =

√
r21,1 + r22,2 + · · ·+ r2k,k, k = 1, . . . ,M ,

[x]+ = max{0, x} and Γ(.) denotes the gamma function.

Proof: Firstly, (11) is a direct expression of the fact that, for
TSE, according to fig. 1(b) and the above discussion, the com-
plexity upper bound C is proportional to the volume of the hy-
persphere with radius αk less the volume of the hypersphere
with radius

√
βt. If

√
βt > αk (i.e. the

√
βt-hypersphere con-

tains the αk-hypersphere) then the search volume is zero: all
lattice points within the hypersphere with radius αk satisfy the
weight threshold and a random lattice point can be chosen.

It is shown in [10] that the volume of the hypersphere with
radius αk follows

Vk(αk) ≤ πk/2

Γ(k/2 + 1)

k∏
n=1

αn ≤
πk/2

Γ(k/2 + 1)
αkk (13)

which also corresponds to the volume of the search space
for conventional VP. The second inequality in (13) stems from
the fact that the volume of a hypersphere with radius αn in
dimension n = 1, . . . k is less than the volume of the hyper-
sphere with constant radius αk ≥ αn,∀n = 1, . . . k in all
dimensions. Since the initial search radius for the SE algo-
rithm is unbounded, the search volume is upper-bounded by
Vk(∞). Using (13) and lattice theory we have the following
upper-bound for the first term on the right side of (11)

Vk(∞) ≤ πk/2

Γ(k/2 + 1)

k∏
n=1

φn
2
≤ πk/2

2kΓ(k/2 + 1)
φkk (14)

where φk is defined as in the theorem above. For the inner
hypersphere of fig. 1(b) with radius α̃1 =

√
βt at the leaf level

of the sphere search we have the following recursion

Vk(
√
βt) =

∫ α̃k

−α̃k

Vk−1
(√

α̃2
k − y2

)
dy, k = 2, . . . ,M

(15)
where α̃k is the radius for the k-th layer of TSE, with starting
volume

V1(
√
βt) = 2

√
βt (16)

This recursion yields

Vk(
√
βt) =

πk/2

Γ(k/2 + 1)

√
βt

k∏
n=2

α̃n ≥
πk/2

Γ(k/2 + 1)
β
k/2
t

(17)
In (17) the term on the right denotes the volume of a hyper-
sphere with constant radius

√
βt which is the minimum radius

in the TSE recursion. Substituting (17) and (14) for k = M in
(11) yields (12) which concludes the proof.

It was shown in [9] that for an infinite lattice the expected
number of lattice points contained inside a k-dimensional hy-
persphere of radius α is given as

Ep
(
k, α2

)
=

∞∑
q=0

ϕ

(
α2

2(σ2 + q)
,
k

2

)
· rk(q) (18)

where ϕ (x, κ) is the normalized incomplete gamma function
and rκ(x) denotes the number of ways a non-negative integer
x can be represented as a sum of κ squares of integers [9].
Accordingly, it can be shown that the expected number of lat-
tice points visited by the TSE search at the k-th layer is upper
bounded by

p(k) =

∞∑
q=0

ϕ

(
[φ2k/4− βt]+

2(σ2 + q)
,
k

2

)
· rk(q) (19)

The complexity in numbers of numerical operations can
then be calculated using the formula

C(βt) ≤
M∑
k=1

fp(k)

∞∑
q=0

ϕ

(
[φ2k/4− βt]+

2(σ2 + q)
,
k

2

)
· rk(q) (20)
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Fig. 2. NOP vs. N =M for VP and TVP with γt=5dB, 10dB, 15dB
for txSNR=20dB, 4QAM

where fp(k) = 2k + 11 denotes the number of numerical op-
erations per visited node [9] in the k-th search layer.

Since VM (
√
βt) ≥ 0 and Ep (k, βt) ≥ 0, it can be con-

cluded that the proposed TVP has a strictly reduced complex-
ity compared to VP.

5. NUMERICAL RESULTS

To evaluate the complexity gains of the proposed scheme, we
illustrate Monte Carlo simulations of the proposed TVP and
conventional VP for the frequency flat Rayleigh fading statis-
tically uncorrelated MIMO channel whose impulse response
is assumed perfectly known at the transmitter. Fig. 2 shows
the complexity of VP and TVP in terms of numbers of float-
ing point operations (NOP) for increasing numbers of anten-
nas N = M , with ρdB = 20dB. At this point exact NOP
counts are shown based on simulation, while the upper bounds
derived in section 4 are compared to simulation in following
results. The cases of three different receive SNR thresholds
are observed γt = 5dB, γt = 10dB, γt = 15dB. It can be
seen that for γt = 15dB only a minor complexity reduction
is achieved for the cases with well conditioned channel ma-
trices. The complexity benefits however improve as the SNR
thresholds are reduced, allowing for a more relaxed precoding
optimization in (10).

In fig. 3 the complexity in numbers of operations is shown
for increasing values of γt in dB. For high performance thresh-
olds, TVP has the same complexity as VP, since full SE search
is carried out as the weight threshold cannot be satisfied. Com-
plexity benefits can be observed as γt reduces below 20dB.
The theoretical complexity upper bounds for VP from [10] and
TVP from section 4 are included for the 4 × 4 case for com-
parison to the numerical results. The difference between theo-
retical and simulated complexity, as mentioned above is due to
the fact that constant radius hyperspheres with the maximum
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observed radius are considered in the analysis for both VP and
TVP (as opposed to adaptive radius used in SE). Furthermore,
for TVP the volume and number of lattice points calculated is
an overestimate of the ones visited, as the search terminates
once the first lattice point on the surface of the threshold hy-
persphere is met.

Next, fig. 4 shows the tradeoff between complexity and
performance. We introduce the relevant metric µ = R

C in units
of bps/Hz per 103 operations (KOps), where R is the obtained
sum rate and C the associated complexity in numbers of oper-
ations. For the 4× 4 MIMO the value γt = 2.5dB maximizes
the tradeoff metric, while for the 10 × 10 case the optimum
value increases to γt = 5dB.

6. CONCLUSION

We have shown that significant computational gains can be
achieved for vector precoding for given user performance re-
quirements. The complexity efficiency of both conventional
and proposed techniques was studied in terms of the volume of
the search space associated with the perturbation optimization.
Overall, the proposed scheme was proven to offer a favourable
performance-complexity tradeoff compared to VP, while se-
curing the required performance for the mobile users.
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