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ABSTRACT

In this paper, we consider the problem of communicating over an
Additive White Gaussian Noise (AWGN) channel with an unknown
noise power without feedback. For the case where the noise power
is drawn from a distribution with K distinct values, we model the
channel as a K-user broadcast channel, with a user for each of the
K possible noise powers. We propose two metrics for measuring the
loss of using a broadcast code compared to an omniscient transmit-
ter. Using these metrics, we solve for the optimal power allocation in
a superposition code. For the case of K = 2, we prove several inter-
esting properties of the optimal power allocation and the minimum
loss.

Index Terms— adaptive coding, broadcast channel

1. INTRODUCTION

Traditional Adaptive Modulation and Coding (AMC) proceeds by
first defining a finite collection of codes and modulation schemes
associated with different information rates rk measured in bits per
channel use. The index k ∈ {1, . . . ,K} indicating which scheme
to use is called the Modulation and Coding Scheme (MCS) index.
The receiver measures the channel quality using reference or train-
ing signals, or pilots, and determines the information rate among this
finite set corresponding to a modulation and coding scheme achiev-
ing a given target probability of error. The associated index k, or
some quantization of it, is then fed back to the transmitter under the
label Channel Quality Index (CQI). The transmitter then takes into
consideration factors such as the amount of data waiting to be sent to
the various receivers associated with it and their necessary quality of
service, then selects the modulation and coding scheme to use when
transmitting to them.

The key capability that such a scheme allows is the adaptability
of the amount of information flowing across the link to the fluctu-
ations in channel state. Such a scheme relies on explicit feedback
from the receiver to the transmitter and this feedback can account for
a non-trivial amount of the channel capacity. An omniscient trans-
mitter would know which state the channel is in and could select an
appropriate code and modulation scheme without explicit feedback
from the receiver.

The problem considered here fits into the larger class of prob-
lems dealing with coding for channels with state. The writing on
dirty paper result, which is a specialization of the Gelfand-Pinsker
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theorem to AWGN channels with state, shows that if the state infor-
mation is available noncausally at the transmitter, then the effect of
the state can be canceled [1]. Our model assumes that the state infor-
mation is not available (causally or noncausally) at the transmitter.

In this paper, we propose a broadcast channel model for a trans-
mitter to effect channel dependent AMC without Channel State
Information (CSI), as suggested by Cover’s approach to compound
channels [2] (§2) along with two related metrics for measuring the
loss between our model and an omniscient transmitter (§3). We pro-
vide a characterization of a transmitter that minimizes these losses
(§3.1). For the special case ofK = 2, we prove several non-intuitive
properties of the optimal solution (§3.2). Finally, we provide plots of
the optimal solution for both the general case (§4.1) and the special
case K = 2 (§4.2).

2. PROBLEM MODEL

Consider a point-to-point AWGN channel between a basestation and
mobile handset. The unknown noise power of the channel is mod-
eled as a random variableN with some probability mass function pk
defined on a set of K possible values n1 ≤ n2 ≤ · · · ≤ nK . Under
the assumption of a fixed transmit power P at the basestation, we
can consider the random variable Γ = P/N with probability mass
function defined on γ1 = P/n1 ≥ · · · γK = P/nK . This is depicted
in the left-hand side of Fig. 1. We are interested in a variable-to-
fixed coding strategy [3], wherein a fixed number of symbols are
transmitted across the channel and the decoder recovers a variable
number of information bits, depending on the state of the channel.
By utilizing a fixed blocklength, we ensure the the receiver decodes
some information in a fixed amount of time. This is in contrast to
a fixed-to-variable coding strategy [3] (e.g., rateless fountain codes)
where a variable number of symbols (and hence variable delay) are
transmitted in order for the receiver to decode a fixed number of in-
formation bits. We note that in an AMC scheme with feedback, the
collection of codes do not need to be all of the same length.

For channels with state, a lower bound for the variable-to-fixed
channel capacity is known in terms of the capacity region for a
broadcast channel with degraded message sets [3]. For the AWGN
channel model considered here, this bound is tight. The capacity
region of the K-user broadcast channel with independent messages
is [4, 5]

Rk ≤ C

(
αk∑

i<k αi + γ−1
k

)
k = 1, . . . ,K (1)

where γ1 ≥ · · · ≥ γK are the SNRs (γk = P/nk) associated
with the selected adaptive modulation and coding rates, C(γ) =
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Fig. 1: Trying to guarantee messages with information rates that
are a function of an unknown channel SNR can be understood as a
broadcast channel model. The receivers on the right do not in re-
ality simultaneously exist, however, the code must ensure a certain
message is successfully received under each of theK possible chan-
nel states, and this can be thought of as reliably transmitting those
messages to K simultaneous receivers.

1/2 log2(1 + γ), and α ≥ 0 such that
∑
k αk = 1. By consider the

superposition coding achievability proof of (1), we can understand
the αk’s as being the fraction of the transmitter’s total power P that
is used for encoding the message for the k-th receiver. The message
containing Rk bits is reliably decoded by all receivers 1, . . . , k; that
is, the k-th receiver reliably receives

∑K
i=k Rk bits and in particular,

all receivers reliably receive RK bits and this can be interpreted as
representing common information for all receivers.

3. GAP TO OMNISCIENCE

We must select a point on the Pareto frontier of (1) by selecting
αk ≥ 0, k = 1, . . . ,K such that

∑
k αk = 1, and we must ad-

ditionally measure the capacity loss from not knowing the SNR and
attempting to transmit a single message (with a single, fixed block
length) that is capable of being decoded at several different SNRs
as compared to an omniscient (i.e., perfect CSI estimation and in-
stantaneous feedback) model. It is natural, then, to combine these
two issues together by selecting the point in the rate region which
minimizes an appropriately chosen loss metric.

If we have a prior distribution indicating the probability that the
channel is in each of the K states, we could seek to minimize ex-
pected capacity loss

JE,|·| (α) =

K∑
k=1

pk

(
C(γk)−

K∑
i=k

C

(
αi∑

j<i αj + γ−1
i

))
(2)

where pk is the probability of the channel being in state γk. The
right-hand side of (2) is the difference between the variable-to-fixed
channel capacity if the AWGN channel state were known to the
transmitter and when the state is unknown [3].

3.1. General Solution
Once we have selected an appropriate loss metric, we findα1, . . . , αK
by solving the following optimization

minimize
α

J (α)

subject to αk ≥ 0 k = 1, . . . ,K

K∑
k=1

αk = 1.

(3)

We can alternatively express the expected capacity loss as

JE,|·| (c) = E [C (Γ)]−
K∑
k=1

fkC

(
ck − ck−1

ck−1 + γ−1
k

)
(4)

where

fk ,
k∑
i=1

pi = P [Γ ≥ γk] (5)

and

ck =

k∑
i=1

αi, αk = ck − ck−1 (6)

We observe that only the negative sum in (4) depends on c, and hence
we can minimize (4) by selecting the c that solves

maximize
c

K∑
k=1

fkC

(
ck − ck−1

ck−1 + γ−1
k

)
subject to ck ≥ ck−1 k = 1, . . . ,K.

(7)

We note that the objective function in both (3) is not convex; as a
simple counter example, let K = 2, γ1 = 2, γ2 = 1, and p1 = 1/2.
The second derivative w.r.t. α using these parameters is not positive
semi-definite.
Theorem 1 The solution to (7) is partially characterized by

c∗k =
fkγk − fk+1γk+1

γkγk+1(fk+1 − fk)
(8)

if c∗k−1 6= c∗k 6= c∗k+1 with c0 = 0 and cK = 1. Further, when the
fk’s and γk’s are such that (8) is an increasing sequence in k, the
solution to (7) is is given as

c∗k =

[
fkγk − fk+1γk+1

γkγk+1(fk+1 − fk)

]1
0

(9)

where [·]10 = max{min{·, 1}, 0}.
Proof. Forming the Lagrangian for this optimization we have

L(c,µ) =

K∑
k=1

fkC

(
ck − ck−1

ck−1 + γ−1
k

)
+

K∑
k=1

µk(ck − ck−1). (10)

The first derivate of the Lagrangian w.r.t. ck at ck is equal to zero if
and only if the following condition is true:

(ck − c∗k) = (µk − µk+1)
(ck + γ−1

k )(ck + γ−1
k+1)

fk+1 − fk
(11)

The rest of the proof (which is omitted for brevity) proceeds by using
the known sign of each of the terms in (11) to show that the unique
stationary point has either ck = 0, ck = c∗k, or ck = 1.
Remark. The requirement in Theorem 1 that the fk’s and γk’s are
such that (8) is an increasing sequence in k holds true in some natural
cases of interest. If we consider uniformly distributed (pk = 1/K),
exponentially spaced SNRs (γk = δK−kγK with δ > 1), then (8)
becomes

c∗k =
k(δ − 1)− 1

δK−kγK
which is increasing in k.

A closely related metric is the fractional expected capacity loss

J%,E (α) =
JE,|·| (α)∑K
k=1 pkC(γk)

(12)

which is the expected capacity loss multiplied by a scalar that does
not depend on α and so has the same optimal α.
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3.2. Channels with Two States
We now consider in detail the special case where the channel is in
one of two possible states (K = 2). We will write γ1 = δγ2 for
some δ ≥ 1 and consider how the selected point on the Pareto fron-
tier of (1) and the resulting minimum loss behave as a function of
δ for the fixed parameters γ2 and p1 (i.e., the probability of being
in the better state). For the case of two users, a point on the Pareto
frontier is parameterized by α = (α1, α2) = (α, 1− α).
Corollary 1 For K = 2 and γ1 = δγ2, δ ≥ 1, the α that minimizes
(2) and (12) is given as

α∗ =

[
p1δ − 1

δγ2(1− p1)

]1
0

(13)

Proposition 1 For K = 2 and γ1 = δγ2, δ ≥ 1, (i) α∗ = 0 for
1 ≤ δ ≤ 1/p1; (ii) If p1 < 1 then α∗ is monotone increasing in δ,
and; (iii) If p1 ≤ γ2/γ2+1, then

lim
δ→∞

α∗ =
p1

γ2(1− p1)
. (14)

If p1 > γ2/γ2+1, then

α∗|δ= 1
p1−γ2(1−p1)

= 1. (15)

Proof. Omitted for brevity.
The first part of Proposition 1 says the the better SNR (γ1) needs

to be larger than worse SNR (γ2) by a minimum amount before the
transmitter should allocate any of its power to encoding a message
for this better channel. This threshold is inversely proportional to the
probability of the high SNR — the less likely Γ = γ1, the larger γ1
needs to be before the transmitter will allocate power for this channel
state. The last part of Proposition 1 says that unless the probability
of being in the better state is sufficiently high, the transmitter should
not allocate all of its power for this channel despite how much better
the channel may be. Conversely, if the probability of Γ = γ1 is
high enough then there exists a threshold on γ1 above which the
transmitter should allocate all of its power to that state.
Proposition 2 For K = 2 and γ1 = δγ2 with δ ≥ 1, the expected
capacity loss JE,|·| (α∗) is: (i)

JE,|·| (α
∗)
∣∣
δ=1

= 0; (16)

(ii) increasing in δ, and; (iii) bounded as δ → ∞. In particular, if
p1 ≤ γ2/γ2+1,

lim
δ→∞

JE,|·| (α
∗) =

p1
2

log2

(
γ2(1− p1)

(1 + γ2)p1

)
− 1

2
log2 (1− p1)

(17)
and if p1 > γ2/γ2+1

lim
δ→∞

JE,|·| (α
∗) =

1− p1
2

log2 (1 + γ2) (18)

Proof. Omitted for brevity.
Proposition 3 For K = 2 and γ1 = δγ2 with δ ≥ 1, the expected
capacity E [C( Γ )] is positive, monotonically increasing in δ, and
approaches∞ as δ →∞.
Proof. Immediate from the properties of log2(x).
Proposition 4 For K = 2 and γ1 = δγ2 with δ ≥ 1, the fractional
expected capacity loss J%,E (α) is: (i) increasing in δ for 1 ≤ δ ≤
1/p1; (ii) non-monotonic in δ, and; (iii)

lim
δ→∞

J%,E (α) = 0 (19)

Proof. Omitted for brevity.
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Fig. 2: Minimum expected capacity loss JE,|·| (α∗) as a function
of maximum SNR (γ1) and the number (K) of AMC levels. The
minimum SNR was γK = 0 dB.
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Fig. 3: Minimum fractional expected capacity loss J%,E (α∗) as a
function of maximum SNR (γ1) and the number (K) of AMC levels.
The minimum SNR was γK = 0 dB.

4. RESULTS

In this section, we present plots of the minimum expected capacity
loss and minimum fractional expected capacity loss for general K
and specifically for K = 2.

4.1. K-State Channel Results
Fig. 2 shows the minimum expected capacity loss and Fig. 3 shows
the minimum fractional expected capacity loss plotted as functions
of γ1 in dB for different values of K. In both plots, γK = 0 dB and
γ2, . . . , γK−1 are evenly spaced (in dB) between γ1 and γK . The
assumed prior distribution was the discrete uniform distribution (i.e.,
pk = 1/K). From Fig. 2, we observe that the minimum expected
capacity loss is increasing in γ1 and for small values of γ1 (i.e., γ1 ≤
5 dB), the minimum expected capacity loss looks linear in γ1 and
independent of K. From Fig. 3, we observe that, like Fig. 2, for
γ1 ≤ 5 dB, the minimum fractional expected capacity loss looks
linear in γ1 and independent of K. Unlike Fig. 2, the minimum
fractional expected capacity loss is not monotonic in γ1.

4.2. Two-State Channel Results
For all plots in this section, p1 = 1/2 and show results for: (i) γ2 =
−3 dB, shown in solid red line; (ii) γ2 = 0 dB, shown in dashed
blue line, and; (iii) γ2 = 3 dB, shown in dotted green line. . With
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Fig. 5: Minimum expected capacity loss JE,|·| (α∗) as a function of
δ in dB for different values of γ2 where α∗ solves (3).

this value for p1 and the given values of γ2, we have the following
three conditions: (i) p1 > γ2/γ2+1; (ii) p1 = γ2/γ2+1, and; (iii) p1 <
γ2/γ2+1.

Fig. 4 shows the value of α that minimizes both the expected
capacity loss and fractional expected capacity loss as a function of δ
for the previously mentioned values of γ2. We observe from Fig. 4,
thatα∗ is identically 0 for δ ≤ 3 dB (Prop. 1(i)) and is monotonically
increasing in δ (Prop. 1(ii)). Additionally, we see that α∗approaches
the limits (i) 1 at δ = 6 dB for γ2 = −3 dB, (ii) 1 for γ2 = 0 dB,
and (iii) 0.5 for γ2 = 3 dB (Prop. 1(iii)).

Fig. 5 shows the expected capacity loss JE,|·| (α∗) as a function
of δ for the previously mentioned values of γ2. We observe from
Fig. 5 that JE,|·| (α∗) = 0 for δ = 1 (0 dB) (Prop. 2(i)) and is
monotonically increasing in δ (Prop. 2(ii)). The expected capacity
loss is bounded by (i) 0.1465 bits for γ2 = −3 dB, (ii) 0.2500 bits
for γ2 = 0 dB, and (iii) 0.3535 bits for γ2 = 3 dB (Prop. 2(iii)).

Fig. 6 shows the fractional expected capacity loss J%,E (α) as
a function of δ for the previously mentioned values of γ2. We ob-
serve from Fig. 6 that J%,E (α) is increasing in δ for 0 dB ≤ δ ≤
3 dB (Prop. 4(i)) and is non-monotonic over the full range of δ
(Prop. 4(ii)). We conclude by noting that while the fractional ex-
pected capacity loss approaches the limit 0 as δ →∞ (Prop. 4(iii)),
this convergence is rather slow.
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Fig. 6: Minimum fractional expected capacity loss J%,E (α) as a
function of δ in dB for different values of γ2 where α∗ solves (3).

5. CONCLUSIONS & FUTURE WORK

Using the K-user broadcast channel as a model for channel with K
unknown states, we have characterized the optimal power allocation
across a family of fixed block length codes. In the case of K = 2,
we have shown that the spacing between the better SNR and the
worst SNR must be above some threshold before the optimal trans-
mitter will allocate power to the codeword associated with the better
SNR. Additionally, we have shown that if the probability of being in
the state with the better SNR is not high enough, the optimal trans-
mitter will never allocate its entire power budget for the codeword
associated with the better SNR. Looking at Fig. 2 and Fig. 3, we
observe that as the number of possible channel states gets large, the
minimum expected capacity loss and fractional expected capacity
loss appear to be approaching some limiting function. In subsequent
work, we will use calculus of variations to characterize this limiting
function as K →∞. The case of an uncountably infinite number of
AMC levels was handled for Rayleigh distributed channel fades in
[6]. Here we focused on a finite number of AMC values, and allow
for an arbitrary distribution on the associated SNRs.
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