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ABSTRACT
It is widely recognized that emerging hardware technologies
will be inherently unreliable. In this paper, we study the
performance of finite-alphabet iterative decoders when im-
plemented on noisy hardware built out of unreliable compo-
nents. We derive a recursive expression for the error proba-
bility in terms of both the transmission noise and processing
errors. We allow different components of the decoding al-
gorithm associated with certain computational units (i.e., bit
and check nodes of varying degrees in the underlying graph)
to be implemented using a collection of processors with vary-
ing levels of processing error rates. Performance analysis and
optimal resource allocation of a noisy Gallager E decoder is
presented as an application example of our general deriva-
tion. Simulations demonstrate that the implementation of a
noisy iterative decoder according to the proposed analysis-
guided optimal resource allocation outperforms implementa-
tions based on uninformed resource allocation under the com-
mon resource budget.

Index Terms— Iterative decoders; Inference on Graphs;
Noisy hardware; Optimal resource assignment

1. INTRODUCTION
Characterizing reliability of systems built out of unreliable
hardware components is now emerging as a central issue in
implementing modern signal processing and communications
algorithms [1]. The original modeling of circuits made out
of faulty gates experiencing transient errors is due to von
Neumann [2]. This modeling has provided a basis for fault-
tolerant computing [3, 4], an active research area concerned
with placing additional (redundant) processing elements to
combat transient errors.

Low-density parity check (LDPC) codes and their decod-
ing algorithms were invented by Gallager in 1960s [5]. These
codes offer significant improvement in data reliability and
have now found widespread use in modern data communica-
tion and storage systems. Gallager proposed certain message
passing (iterative) decoding algorithms; the two algorithms
with binary messages later became known as the Gallager
A and Gallager B algorithms, and the algorithm with finite-
alphabet messages later became known as the Gallager E al-
gorithm [6]. Due to the compact message representation, such
decoders are particularly attractive in implementing LDPC-
coded systems.

In this work, we study popular finite-alphabet message
passing decoders a la Gallager implemented on noisy hard-
ware. Interestingly, fault tolerance of faulty memories was
recently improved with a novel use of LDPC codes in [7]. The
capacity and certain concentration results for a noisy LDPC
message passing decoder were computed in [8]. Message rep-
etition was explored in [9] to mitigate computational errors
arising in a noisy Gallager B decoder. Our preliminary results
on regular and irregular LDPC codes with binary decoders
implemented on noisy hardware were reported in [10] [11].

In this paper, we generalize the error analysis presented
in [10] [11] for a noisy Gallager B decoder [5], a decoder that
deals with binary messages, to a noisy M -alphabet iterative
decoder. As in [11], the processors with different processing
error rates are assigned to different computational units (i.e.,
variable nodes and check nodes). Section 2 discusses recent
results and how are they relate to this work. We derive an ex-
pression for the iterative error probability of a general noisy
iterative decoder in Section 3. In Section 4, as an application
example of the generalized error analysis, we derive the opti-
mal assignment of processors across different components of
the decoder in a noisy Gallager E decoder (with alphabet size
3). In Section 5, we present simulation results that demon-
strate performance improvement achieved by the optimal re-
source assignment over an uninformed selection. Section 6
provides the conclusions.

2. RELATION TO PRIOR WORK
Information-theoretic results for LDPC codes implemented
on noisy decoders were derived in [8]. In that work, the per-
formance of a noisy Gallager A decoder [5] implemented us-
ing a single type of processors was analyzed. Authors in [10]
[11] extended this analysis to a noisy Gallager B decoder with
multiple kinds of processors. The work presented here further
generalizes the analysis of noisy Gallager A and B decoders
(both binary) to finite-alphabet iterative decoders. The au-
thors in [9] considered a similar error model of variable and
check nodes for a noisy Gallager B decoder, but focused on a
related problem of error recovery via message repetition.

3. ERROR ANALYSIS OF A NOISY FINITE
ALPHABET ITERATIVE DECODER

We consider a low-density parity check (LDPC) code C de-
scribed a bipartite graph G = G(V, F,E). Here V denotes
the set of variable nodes, F denotes the set of check nodes,
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andE is the set of edges connecting variable nodes and check
node. Let m = |F | and n = |V |. We also let Nv (Nc) de-
note the set of checks (variables) incident to variable node v
(check node c). Suppose dv is the largest variable node de-
gree, and suppose dc is the largest check node degree. For
1 ≤ i ≤ dv , following popular notation [6], we let λi denote
the fraction of edges in G that are connected to the variable
nodes of degree i. Also, for 1 ≤ j ≤ dc, we denote by ρj
the fraction of edges in G that are connected to the check
nodes of degree j. It is useful to define λ(t) :=

∑dv
i=1 λit

i−1

and ρ(t) :=
∑dc
j=1 ρit

j−1, respectively, as the variable and
check degree polynomials. Finally, the collection of graph
codes whose bipartite graphs follow λ(t), ρ(t) distributions is
referred to as the (λ, ρ) ensemble.

We use von Neumann model [2], commonly adopted for
the study of transient errors in hardware [12] and interpret it
as follows. We assume that iterative messages exchanged be-
tween variable and check nodes are subject to transient errors,
and that these errors are independent across different compu-
tational units and across different iterations of the decoder.
Following the set-up presented in [11], we consider a general
framework that allows processors of different error probabil-
ities at different check nodes and variable nodes. We remark
that in practice, these error probabilities depend on the imple-
mentation choice.

Let us assume that we have L types of processors avail-
able for the implementation of variable nodes and check
nodes, and that that these processors are characterized by
distinct error probabilities qi, 1 ≤ i ≤ L, ordered in the as-
cending order from best to worst. We collectively refer to the
ascending ordering of qi’s as Q. We assume (as in stochastic
computing [13]) that each bit/check node acts as a probabilis-
tic channel wherein the input and the output are different with
probability of the processing error of the associated processor.

For the noisy decoder, the message exchange is iteratively
performed as follows: the message from variable node v to
check node c at iteration i is denoted m

(i)
v→c and the mes-

sage from check node c′ to variable node v′ at iteration i is
denoted m(i)

c′→v′ . It is useful to specify two auxiliary mes-
sages, m̂(i)

v→c and m̂(i)
c′→v′ , which respectively represent the

outgoing messages of noiseless processors. The decoder op-
erations are shown in Fig. 1. Functions Ψv and Ψc are lo-
cal functions at variable and check nodes, respectively, and
they depend on the implementation choice of the decoder un-
der study. In the Gallager B decoder, for example, the map-
ping Ψv from m

(i)
c′→v , c′ ∈ Nv \ c to m̂(i)

v→c is the major-
ity rule, while the mapping Ψc from m

(i)
v′→c, c

′ ∈ Nc \ v to
m̂

(i)
c→v is the XOR operation. Let τvj,l represent the fraction

of edges that are connected to the variable nodes of degree j,
1 ≤ j ≤ dv , and error ql. Likewise, we let τ ck,r represent
the fraction of edges that are connected to the check nodes
of degree k, 1 ≤ k ≤ dc, and error qr. In this set-up, we
are interested in estimating the performance of the algorithm,

Fig. 1. General iterative decoder operations.
which we seek to express in terms of the density evolution of
the propagated messages.

We remark that, as proved in [8], the density evolution
under transient errors is independent of the transmitted code-
word. We thus follow [8] and assume the transmission of
the all-zero codeword in our analysis. As in the conventional
(error-free) density evolution [6] and as in [8], and to make
the analysis tractable, we moreover assume that the bipartite
graph is sufficiently cycle-free.

It was shown in [8] that the well-known result on the con-
centration of message propagation [6] for LDPC decoding al-
gorithms still holds true even in the presence of processing
noise for finite alphabet iterative decoders. We thus focus on
the average performance of our noisy decoder. We denote by
pi the average error in the messages from variable to check
nodes in iteration i; i.e., pi = E

[
Pr{m(i)

v→c 6= 0}
]
, where the

average is taken over the (λ, ρ) code ensemble with degree
and processor error rate distribution specified by τvj,l’s and
τ ck,r’s. In the first iteration, this error is simply the parameter
p0 of the transmission channel.

We now derive a recursive expression for the error rate
pi+1 for a general finite-alphabet noisy decoder. The deriva-
tions generalize the previous result in [11] obtained for a
noisy Gallager B decoder (under a binary message alphabet).

Denote the message alphabet by Φ with |Φ| = M . (If
Φ = {0, 1} the alphabet is binary.) The error rate pi+1 of a
general finite-alphabet noisy iterative decoder is derived from
the probability mass function (PMF) of noiseless messages,
Pr{m̂(i)

v→c} and Pr{m̂(i)
c→v}. We assume that when a proces-

sor outputs an erroneous value, it does so equiprobably over
all choices,

Pr{m(i)
x→y = α|processor made an error, m̂(i)

x→y = γ}

= Pr{m(i)
x→y = β|processor made an error, m̂(i)

x→y = γ},
for all α, β 6= γ, α, β, γ ∈ Φ for x→ y being either c→ v or
v → c.

Then, the PMF of variable-to-check message m(i+1)
v→c in

the noisy decoder can be expressed as a function of variable-
to-check message m̂(i+1)

v→c of the noise-free decoder,
Pr{m(i+1)

v→c = α}

= (1− ql) Pr{m̂(i+1)
v→c = α}+

∑
β∈Φ\α

ql
M − 1

Pr{m̂(i+1)
v→c = β}

=

(
1− Mql

M − 1

)
Pr{m̂(i+1)

v→c = α}+ ql
M − 1

. (1)
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Similarly, after some algebra, we have

Pr{m(i)
c→v = α} =

(
1− Mql

M − 1

)
Pr{m̂(i)

c→v = α}+ qr
M − 1

.

(2)
With (1) and (2), one can then recursively compute the

PMF of the messages in the noisy decoder as we now show.
Let deg(·) denote the degree and ε(·) denote the error rate
assigned to a particular node. The average PMF of the check-
to-variable messages at iteration i can be derived by taking
the average of (2) w.r.t. processor error rate distribution τ ck,qr ,

E[Pr{m(i)
c′→v = α}] (3)

=

dc∑
k=1

L∑
r=1

τ ck,qrEdeg(c′)=k,ε(c′)=qr [Pr{m(i)
c′→v = α}]

=

dc∑
k=1

L∑
r=1

τ ck,qr ((1− Mql
M − 1

) Pr{m̂(i)
c′→v = α}+

qr
M − 1

).

We note that Pr{m̂(i)
c′→v = α} is computed as in the

noiseless case, by applying the mapping Ψc to the inputs
Pr{m(i)

v′→c′ = β}, β ∈ Φ, v′ ∈ Nc \ v (see also Fig. 1).
Next, we derive the average PMF of the messages from

the variable nodes to the check nodes,
E[Pr{m(i+1)

v→c = α}] (4)

=

dv∑
j=1

L∑
l=1

τvj,qlEdeg(v)=k,ε(v)=ql [Pr{m(i+1)
v→c = α}]

=

dv∑
j=1

L∑
l=1

τvj,ql((1−
Mql
M − 1

) Pr{m̂(i+1)
v→c = α}+

ql
M − 1

).

Similarly, Pr{m̂(i+1)
v→c = α} is computed as the output of

Ψv with inputs Pr{m(i)
c′→v = β}, β ∈ Φ and c′ ∈ Nv \ c,

analogously to the noiseless case (see also Fig. 1). Therefore,
by computing Pr{m(i)

v′→c′ = β} from Pr{m̂(i)
v′→c′ = β}, then

Pr{m̂(i)
c′→v = δ} from Pr{m(i)

v′→c′ = γ}, then Pr{m(i)
c′→v =

δ} from Pr{m̂(i)
c′→v = δ}, and then Pr{m̂(i+1)

v→c = α}
from Pr{m(i)

c′→v = ε}, and then Pr{m(i+1)
v→c = α} from

Pr{m̂(i+1)
v→c = α} we arrive at the recursive expression

relating Pr{m(i+1)
v→c = α} to Pr{m(i)

v′→c′ = β}, where
α, β, γ, δ, ε ∈ Φ.

For an error-free iterative decoder, the overall error at iter-
ation i,

∑
α∈Φ\0 Pr{m̂(i)

v→c = α} converges to zero for small
enough p0. In contrast, for a noisy decoder this overall er-
ror converges to some strictly positive quantity which we call
the residual error p. (or final BER). We note that p is at least∑dv
j=1

∑L
l=1 τ

v
j,l

ql
M−1 .

It can be shown that p improves with higher variable node
degree (see also [10]).

3.1. Noisy Gallager E Decoder
As an illustrative example, we consider a noisy Gallager
E decoder [6]. The noisy Gallager E decoder has Φ =

{−1, 0,+1} andM = 3. Denote the probabilities Pr{m̂(i)
c→v =

β} and Pr{m̂(i)
v→c = β} of the messages of the noiseless de-

coder by p̂(i)
c,β and p̂(i)

v,β , respectively, for β ∈ Φ. Also denote

the noisy decoder message PMFs by p(i)
c,β and p(i)

v,β .

We wish to derive a recursive expression for p(i+1)
v,β in

terms of p(i)
v,β . From the analysis of the nominal error-free

decoder [6], the noiseless check messages are

p̂
(i)
c,1 =

1

2
[(p

(i)
v,1 + p

(i)
v,−1)dc−1 + (p

(i)
v,1 − p

(i)
v,−1)dc−1],

p̂
(i)
c,−1 =

1

2
[(p

(i)
v,1 + p

(i)
v,−1)dc−1 − (p

(i)
v,1 − p

(i)
v,−1)dc−1],

p̂
(i)
c,0 = 1− (1− p(i)

v,0)dc−1. (5)

Thus, p(i)
c,α is

p(i)
c,α =

dc∑
k=1

L∑
r=1

τ ck,qr ((1− 3ql
2

)p̂(i)
c,α +

qr
2

), (6)

where p̂(i)
c,α is derived from (5) and uses M = 3.

From the standard error-free decoder analysis, we can de-
rive the noiseless variable message, p̂(i+1)

v,α , from p
(i)
c,β , α, β ∈

Φ as shown on the top of the next page. Then, p(i+1)
v,α is given

by

p(i+1)
v,α =

dv∑
j=1

L∑
l=1

τvj,ql((1−
3ql
2

)p̂(i+1)
v,α +

ql
2

), (10)

where p̂(i)
v,α is derived by (9). Note that we put M = 3 in (4)

to derive (10). Then we have p(i+1)
v,α as functions of p(i)

v,β from
(5) to (10).

4. OPTIMAL ASSIGNMENT OF PROCESSORS
The optimal assignment of processors to check and variable
nodes with different degrees can be derived by minimizing
the residual error with respect to τvj,ql and τ ck,qr

This minimization problem may in general be difficult to
solve. Fortunately, when the channel error rate is small and
the error rates of constituent processors are also sufficiently
small, one can show that for a code that has all variable nodes
of degree at least 3, by ignoring the second order terms in-
volving p̂(0)

v,0, p̂
(0)
v,−1, p̂

(i)
c,0, and p̂(i)

c,−1, the minimization prob-
lem reduces to minimizing

∑dv
j=1

∑L
l=1 τ

v
j,ql
· ql, which then

simply becomes a linear programming problem.
We now study the optimal assignment of processors that

offers different reliabilities of different processing nodes of
the decoder. An optimal assignment is the one that minimizes
the residual error p. Suppose that for every 1 ≤ l ≤ L, the
cost of implementing a variable node processor of degree j
for 3 ≤ j ≤ dv (we assume that there is no variable node
of degree 1, 2) and error ql for 1 ≤ l ≤ L is wvj,l, and for
every check node of degree k and error qr for 1 ≤ k ≤ dc and
1 ≤ r ≤ L, the cost is wck,r.

Suppose we fix the maximum allowable costW . The total
number of variable nodes of degree j and processing error ql
is Zτvj,l/j and the total number of check nodes of degree k
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p̂
(i+1)
v,0 = p

(0)
v,0

∑
(α,β):α−β=0

(
dv − 1

α, α, dv − 1− 2α

)
· (p(i)

c,1)
α(p

(i)
c,−1)

α(p
(i)
c,0)

dv−1−2α + p
(0)
v,1

∑
(α,β):α−β=−w(i)

(
dv − 1

α, β, dv − 1− α− β

)

· (p(i)
c,1)

α(p
(i)
c,−1)

β(p
(i)
c,0)

dv−1−α−β + p
(0)
v,−1

∑
(α,β):α−β=w(i)

(
dv − 1

α, α, dv − 1− α− β

)
· (p(i)

c,1)
α(p

(i)
c,−1)

β(p
(i)
c,0)

dv−1−α−β

p̂
(i+1)
v,−1 = p

(0)
v,0

∑
(α,β):α−β>0

(
dv − 1

α, β, dv − 1− α− β

)
· (p(i)

c,1)
α(p

(i)
c,−1)

β(p
(i)
c,0)

dv−1−α−β + p
(0)
v,1

∑
(α,β):α−β<−w(i)

(
dv − 1

α, β, dv − 1− α− β

)

· (p(i)
c,1)

α(p
(i)
c,−1)

β(p
(i)
c,0)

dv−1−α−β + p
(0)
v,−1

∑
(α,β):α−β<w(i)

(
dv − 1

α, β, dv − 1− α− β

)
· (p(i)

c,1)
α(p

(i)
c,−1)

β(p
(i)
c,0)

dv−1−α−β ,

p̂
(i+1)
v,1 = 1− p̂(i+1)

v,1 − p̂(i+1)
v,0 . (9)

and processing error qr is Zτ ck,r/k, where Z denotes the total
number of edges in the LDPC graph.

By a previous discussion, our aim is then to solve the fol-
lowing optimization problem:

Minimize:
dv∑
j=3

L∑
l=1

τvj,ql · ql

Subject to: Z
dv∑
j=3

L∑
l=1

τvj,lw
v
j,l

j
+ Z

dc∑
k=1

L∑
r=1

τ ck,rw
c
k,r

k
≤W,

L∑
l=1

τvj,l = λj ,

L∑
r=1

τ ck,r = ρk. (11)

We observe that the objective function and all constraints
in the preceding optimization problem are linear in terms of
the variables τvj,l’s and τ ck,r’s so that efficient algorithms can
be used to solve this linear programming problem.

It is interesting to note that the objective function in (11)
does not depend on τ ck,r’s. As a result, for the codes without
variable node degree less than 3, all the check nodes admit
the least expensive processors (of error parameter qL) in the
optimal solution.

5. SIMULATION RESULTS
In this section we report on experimental results. We tested
the performance of two irregular codes proposed by MacKay
(codes are available at [14]). Code 1 has 9972 variable nodes
of which 9141 nodes have degree j1 = 3 and 831 nodes have
degree j2 = 9. The code has m = 4986 check nodes all with
degree 7. Code 2 has 1920 variable nodes of which 640 nodes
have degree 14 and 1280 nodes have degree 18. This code has
5760 check nodes in total, 1280 nodes with degree 4 and 4480
nodes with degree 6.

In our MATLAB simulations, we considered the case with
two kinds of available processors with error rates q1 = 10−4

and q2 = 10−3. Channel error was 2×10−3. We assigned the
cost of 10 (resp. cost of 1) to the variable nodes of degree j1
and error q1 (resp. error q2), and we assigned the cost of 100
(resp. cost of 10) to the variable nodes of degree j2 and error
q1 (resp. error q2). For code 1, we assigned cost of 10 (resp.
cost of 1) to the check node with error q1(resp. error q2). For
code 2, the cost assignment is the same over all nodes.

Fig. 2. The performance comparison of optimal assignment
and random assignment for the noisy Gallager E decoder.

Two kinds of noisy Gallager E decoders are simulated:
one based on the analysis-guided processor assignment and
another one based on uninformed (random) assignment of
faulty processors. We plotted the resulting BERs for the two
codes in Fig. 2 for a range of total costs (a part of the plot is
suppressed to highlight the difference between the allocation
choices). The simulation results are presented for the finite-
length case but nonetheless corroborate the analysis (valid
for the infinite-length case) and demonstrate the improvement
in the performance of the decoder when processors are as-
signed based on the solution of (11). The improvement is
more pronounced for code 2, which has a higher fraction of
check nodes. The results show that the same BER (at about
2 × 10−4) can be obtained by optimal assignment at about 1

2
of the cost of the random assignment.

6. CONCLUSION
In this paper, we studied a noisy finite-alphabet iterative de-
coder implemented on hardware built out of processors with
different error rates. We derived an iterative expression for
the error rates as a function of both transmission noise and
processing noise. As an example, we formulated the optimal
processor assignment for a noisy Gallager E decoder. Illus-
trative examples showed improvement in the final BER when
processors were optimally assigned. Our results may serve as
a basis of a future study of code design and decoding algo-
rithms implemented on noisy hardware.
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