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Abstract—Since all packets in linear network coding are subject
to linear combinations, in all existing network coding schemes,
a full rank of received packets is required to start decoding.
This requirement unfortunately results in long delays and low
throughputs. In this work we propose two classes of rank deficient
decoders that work for rank deficient received packets. Within
either class, different decoding strategies have been proposed
for tradeoffs between delay/throughput and data accuracy. The
decoders of the first class take advantage of the sparsity inherent
in data and produce the data vectors with the smallest Hamming
weight. Since these decoders have high complexities, we propose
a class of decoders with polynomial complexities based on linear
programming. Both classes of decoders can recover data from
fewer received packets and hence achieve higher throughputs and
shorter delays than the full rank decoder.

Index Terms—Linear network coding, rank deficient decoding,
linear programming

I. INTRODUCTION

Due to its promise of significant throughput gains as well
as other advantages, network coding [1]–[3] is already used or
considered for a wide variety of wired and wireless networks
(see, for example, [4]–[8]). One significant drawback of network
coding is that a full rank of received packets at the receiver
nodes of a multicast (or a unicast) is needed before decoding
can start, leading to long delays and low throughputs, especially
when the number of packets of a session is large. This is
particularly undesirable for applications with stringent delay
requirements.

Aiming to solve this problem, we propose rank deficient
decoding for linear network coding, which can start even when
the received packets are not full rank. By reformulating the
decoding problem of network coding in a different fashion, the
decoding problem reduces to a collection of syndrome decoding
problems. Solving these syndrome decoding problems, rank de-
ficient decoding leads to smaller delays and higher throughputs,
at the expense of possible decoding errors. Specifically, we
propose two classes of rank deficient decoders with different
complexities. The decoders of the first class, called Hamming
norm (HN) decoders, take advantage of the sparsity inherent in
data and produce the data vectors with the smallest Hamming
weight. Since the HN decoders have high complexities for large
size systems, we propose a class of decoders based on linear
programming, referred to as linear programming (LP) decoders.
Considering linear programming relaxation of the Hamming
norm decoders and solving them by using standard linear pro-
gramming procedures, the linear programming decoders have
polynomial complexities and are much more affordable. Both
classes of decoders recover data from fewer received packets
and hence achieve higher throughputs and shorter delays than

the full rank decoder. Since these decoders could produce
erroneous outputs, within each class several different decoding
strategies have been proposed for different tradeoffs between
delay/throughput and data accuracy, and they include the full
rank decoder of network coding as a special case.

In the literature, there are two related different approaches to
dealing with the synergy of network coding and compressive
sensing, and they also aim for different applications. Our work
is quite different from both existing approaches. Above all, our
reformulation of the decoding problem in network coding is
novel, and this reformulation was not considered in the open
literature to the best of our knowledge. One approach was
proposed in [9], where statistical property of data blocks are
taken advantage of to alleviate the “all-or-nothing” drawback of
network coding in distributed storage systems. In this approach,
random linear network coding is used to encode coded blocks
in distributed storage networks. Hence, this approach is not
directly comparable to our work, which focuses on the decoding
issue of linear network coding in general and applies to a
wide variety of applications. The other approach [10], [11]
aims to take advantage of the statistical correlation of data
generated by distributed sensor networks. A salient feature of
this approach is that in theory data are real values and linear
combinations are now performed over the real (or complex)
field. The rationale for this is that the real representation of
data is a more natural one for sensor networks [10], [11]. In
practice, data are represented in a finite precision system. It has
been shown that information loss due to finite precision grows
with the network size [12]. In contrast, in our work network
coding remains over some finite fields, and hence our scheme
does not suffer the information loss due to finite precision as
the approach in [10], [11]. Thus, the full rank decoder remains
the most relevant previous work, and henceforth we compare
our rank deficient decoders with the full rank decoder only.

II. RANK DEFICIENT DECODING

A. System Model

In this work, we treat all packets as N -dimensional row
vectors over some finite field GF(q), where q is a prime power.
Also, we focus on linear network coding (LNC) only, which was
shown to be optimal in most cases [2]. Finally, we assume that
the network is error-free, and error control (see, for example,
[13]–[16]) is not embedded in network coding.

Suppose a source node of a unicast or multicast injects
a collection of n data packets (or row vectors over GF(q)),
X0,X1, · · · ,Xn−1, into the network. At any sink node, m
packets (or row vectors over GF(q)), Y0,Y1, · · · ,Ym−1, are
received, where Yi =

∑n−1
j=0 ai,jXj for i = 0, 1, · · · ,m−1 and
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ai,j ∈ GF(q). Since the sink node can locally generate more
linear combinations of Y0,Y1, · · · ,Ym−1, it is assumed that
Y0,Y1, · · · ,Ym−1 are linearly independent, which implies
that m ≤ n. That is, the m× n matrix A = [ai,j ], often called
the global coding kernel matrix, has a rank of m.

B. Full Rank Decoder

Let us further denote the matrices
[
XT

0 XT
1 · · · XT

n−1

]T
and[

YT
0 YT

1 · · · YT
m−1

]T
as X and Y, respectively, where T is the

matrix transpose operator. Since Y = AX, the sink node can
recover the transmitted data packets by reversing the encoding
of the data packets by the network. This is easily achievable
when m = n, as the sink node can recover the data packets
by computing X = A−1Y. Thus, the decoding in network
coding starts only after the sink node has received n linearly
independent combinations of the transmitted data packets. The
required number of linearly independent packets received by the
sink node leads to longer delays and lower throughputs, which
may be undesirable for some applications.

C. Rank Deficient Decoding

We can formulate the data recovery problem at the sink
node in a different way. Let us consider symbol l of Yi,
and we have Yi,l =

∑n−1
j=0 ai,jXj,l for i = 0, 1, · · · ,m − 1

and l = 0, 1, · · · , N − 1. Let us denote the column vectors
(Y0,l Y1,l · · · Ym−1,l)

T and (X0,l X1,l · · · Xn−1,l)
T as Vl and

Wl, respectively. Clearly, we have Vl = AWl for l =
0, 1, · · · , N − 1. The sink node can recover the data packets
if it can obtain Wl from

Vl = AWl for l = 0, 1, · · · , N − 1. (1)

Eq. (1) shows that the data recovery problem at the sink node
can be viewed as N parallel decoding problems in Eq. (1), each
corresponding to one symbol in the packet (or row vector).
These N parallel decoding problems are equivalent to the
decoding problem of linear network coding.

This reformulated problem is related to two well known
decoding problems. First, if we treat the m × n matrix A as
a parity check matrix for a linear block code of length n and
dimension n − m, the decoding problem in Eq. (1) is closely
related to a syndrome decoding problem. That is, the sink node
needs to recover Wl based on the syndrome Vl. Second, if we
treat Wl as a data vector and A a measurement matrix, this is
analogous to the decoding problem in compressive sensing.

D. Hamming Norm Decoders

Since the data recovery problem at any sink node is equivalent
to a collection of parallel problems in Eq. (1), we focus on one
such problem. In other words, we try to solve V = AW for W,
where V and W are m- and n-dimensional column vectors,
respectively, and A remains an m × n matrix with full rank
(m ≤ n).

For a linear block code of length n and dimension n − m
with a parity check matrix A, V = AW can be viewed
as a syndrome of the received vector W. It is well known
that for a linear block code, the syndromes have a one-to-one
correspondence with its cosets, each of which is of size qn−m.

In other words, all vectors in a coset lead to the same syndrome.
Thus, solving V = AW for W is equivalent to finding a vector
within a coset.

If no side information is available, we can make a decision
within the coset by taking advantage of some inherent properties
of the data vector. In this work, we proceed by relying on the
sparsity of the data vector, which is well justified in many
applications. That is, the proposed Hamming norm decoders
produce the vector with the smallest Hamming weight in the
coset.

As is common in the compressive sensing literature, we
consider two possible scenarios for sparsity. First, when W is
sparse, we use a vector with the smallest Hamming weight in
the coset corresponding to V as the estimate of W. Second,
suppose that ΦW is sparse for a known nonsingular n × n
matrix Φ. Since V = AW = AΦ−1ΦW, we can treat V as a
syndrome for the linear block code defined by AΦ−1. Thus, in
this scenario, we first select a vector with the smallest Hamming
weight in the coset of the code defined by AΦ−1 corresponding
to V, and then produce an estimate of W by multiplying the
selected vector with Φ−1. In both scenarios, the key step is to
select a vector with the smallest Hamming weight in the coset
corresponding to the given syndrome. Thus, we assume W is
sparse without loss of generality.

In coding theory terminology, a vector with the smallest
Hamming weight among a coset is called a leader of the coset.
Note that some coset leaders may not be unique, when more
than one vector in the coset has the smallest Hamming weight.
In this case, either the coset leader is selected among these
vectors at random or a list of all potential leaders is the output.

We remark that this problem is closely related to but different
from the syndrome decoding problem in classic coding theory.
In our decoding, a vector or a list of vectors with the smallest
Hamming weight in the coset corresponding to the given
syndrome is the estimate of the data vector. In the syndrome
decoding problem, a coset leader is often considered as an
estimate of the error vector. However, the key step in both
problems is to select a vector or a list of vectors with the
smallest Hamming weight in the coset corresponding to the
given syndrome.

Thus, we have the following sufficient condition for success-
ful decoding:

Lemma 1. The minimum Hamming distance of the linear block
code defined by A, denoted by dH(A), satisfies dH(A) ≤ m+
1. When the Hamming weight of W, denoted by wH(W), is
less than half of the minimum Hamming distance of the linear
block code defined by A, that is wH(W) < dH(A)

2 , W can be
recovered by syndrome decoding.

Proof: The first part is due to the Singleton bound on the
minimum Hamming distance of linear block codes. The second
part holds because it is well known that a coset leader with
Hamming weight less than dH(A)

2 is unique.
When W is not a unique coset leader, there are two pos-

sibilities. First, when the Hamming weight of W is minimal
in its coset, either W has a probability to be selected when
coset leaders are chosen at random or W is one of the possible
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vectors produced by the decoder, depending on whether the
decoder needs to generate only one vector or a list of vectors.
Second, when the Hamming weight of W is not minimal, a
wrong vector will be produced by the Hamming norm decoder.

E. Decoding Strategies

Possible outcomes of the full rank decoder are failure or
success. In contrast, the proposed Hamming norm decoders may
produce wrong decisions. Analogous to classical error control
coding, the preference between decoding failures and decoding
errors varies from one application to another. For instance, for
applications with stringent delay constraints, partially correct
data packets may be more desirable than decoding failures. For
other applications such as cloud storage, data integrity may be a
top priority than delays, especially when packet retransmission
is possible. Hence, it is necessary to consider a wide range of
decoding strategies so as to offer different tradeoffs between
delay/throughput and accuracy.

Two extreme strategies are natural and straightforward. One
extreme, called the error-free (EF) decoder, is similar to the
full rank decoder in the sense that it decodes only if decoding
success is guaranteed by Lemma 1. The other extreme, referred
to as the best-effort (BE) decoder, always tries to decode with
available received packets. The error-free and best-effort de-
coders represent the most conservative and the most aggressive
strategies, respectively.

We also devise a family of decoding strategies that fills the
gap between these two extremes based on one observation
about error control codes. For an (n, k) perfect code over
GF(2), we have

∑t
i=0

(
n
i

)
= 2n−k, where t =

⌊
dH(A)−1

2

⌋
. In

other words, all coset leaders are unique and have Hamming
weight up to t. However, since most codes are not perfect
and some allowance needs to be made. Hence, we devise a
greedy-l decoding strategy: decodes only if

∑cw−l
i=0

(
n
i

)
= 2n−k,

where cw is the maximal possible Hamming weight of W. The
parameter l represents how aggressive the decoder is: for the
same code defined by A, the greater l is, the more aggressive
the decoder. In fact, one can use different l values to approach
the two extremes, the best-effort and error-free strategies.

F. Linear Programming Decoders

Since both the computational complexity and the memory
requirement of the Hamming norm decoders grow exponentially
with the size of A, we also adopt a linear programming (LP)
approach. Since A is not necessarily sparse, we formulate the
problem based on that for binary linear block code with high-
density polytopes in [17].

Let f0, f1, . . . , fn−1 be the variables representing the
code bits of W, and V = (v0, v1, . . . , vm−1)

T be the
syndrome received. For each check node j ∈ J , let
TE
j = {0, 2, 4, . . . , 2⌊|N(j)|/2⌋} for vj = 0, and TO

j =
{1, 3, 5, . . . , 2⌊(|N(j)| − 1)/2⌋ + 1} for vj = 1. Then the
linear programming formulation for the syndrome decoding is
to minimize

∑n−1
i=0 fi subject to the linear constraints in [17,

(14)–(19)] except that Tj = TE
j if vj = 0, and Tj = TO

j if
vj = 1. In contrast, Tj = TE

j in [17, (14)–(19)]. In addition,

we add a linear constraint to narrow down the optimal solutions:
n−1∑
i=0

fi ≤ cw.

Linear programming may produce non-integral results, in
which case two approaches are considered. The first is to round
off the real values into integers, which are compared with the
original data to compute decoding error or success rate, and we
call this approach LP I. The other, referred to as LP II, is to
declare decoding failure. Both LP I and LP II are applicable to
all greedy as well as the BE strategies.

III. SIMULATION RESULTS

To illustrate the advantages of the proposed rank deficient
decoders, we present some numerical simulation results with the
following settings. Network coding is carried out over GF(2).
We assume each session (or generation) consists of n = 8
packets of length N = 8 bits such that the transmission matrix
has a constant column weight of cw = 2. The matrix A
is generated randomly, with each element being 0 or 1 with
equal probability. For each iteration, as the number of (linearly
independent) received packets m increases from 1 to 15, the
proposed decoders as well as the full rank decoder are used
to decode, and their decoding success, failure, or error on
both packet and bit levels are recorded. For each decoder, its
packet- and bit-level success, failure, or error rate is obtained
by averaging over 100,000 generations.

We note that such small values for n and N are chosen
so that the complexities of the Hamming norm decoders are
manageable. We also note that in this setting, the data sparsity
is manifested as an upper bound on the column weights in
the transmitted data packets. We also have simulation results
assuming other deterministic or stochastic manifestations of data
sparsity, such as an upper bound on the row weights in the trans-
mitted data packets, or the bits in the transmitted data packets
being i.i.d. binary Bernoulli random variables with probability
p (p < 1/2). Due to limited space, the simulation results for
these other manifestations are omitted, but the proposed rank
deficient decoders demonstrate similar advantages regardless of
the manifestation of data sparsity.

In Fig. 1 and Fig. 2, respectively, the packet- and bit-wise
fraction of decoding success, failures, and errors of Hamming
norm decoders are represented by green, yellow, and red bars.
Similarly, Fig. 3 and Fig. 4, respectively, compare the packet-
and bit-wise fraction of decoding success, failures, and errors of
linear programming decoders. In all figures, for each value of
m, the six bars represent, from left to right, the full rank, error-
free, greedy-(−1), greedy-0, greedy-1, and best-effort strategies,
respectively. In order to measure and compare the throughput
and delay of linear network coding with these decoders, the
average minimum numbers of packets required to achieve a
packet success rate (PSR) of 1 or a bit success rate (BSR) of
0.95 are compared in Table I.

The simulation results confirm our claims about rank deficient
decoders. The full rank decoder can recover data packets only
when m ≥ n = 8 and recovers no packet when m < 8. In
contrast, our rank deficient decoders recover a greater fraction
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TABLE I
AVERAGE NUMBER OF PACKETS REQUIRED TO ACHIEVE 100% PSR AND 95% BSR

Strategy FR EF greedy-(-1) greedy-0 greedy-1 BE
HN LP I LP II HN LP I LP II HN LP I LP II HN LP I LP II

100% PSR 9.60 8.84 8.12 8.44 8.45 7.57 8.19 8.22 7.44 8.17 8.21 7.44 8.17 8.21
95% BSR 9.60 8.84 8.05 8.15 8.18 7.40 7.66 7.74 7.17 7.58 7.67 7.17 7.58 7.67
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Fig. 1. Packet-level performance of different strategies using the HN decoders
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Fig. 2. Bit-level performance of different strategies using the HN decoders

of data packets when m ≥ n = 8, and recover a substantial
fraction of data packets even when m < 8.

The proposed decoders provide a wide range of tradeoffs
between delay/throughput and decoding errors. Just like the
full rank decoder, the error-free strategy does not produce
any decoding errors. Nevertheless, it outperforms the full rank
decoder significantly for m < n. For instance, when m = 7, the
error-free strategy recovers over 20% of the packets, while the
full rank decoder cannot recover anything. At the other extreme,
the performance of the best-effort strategy improves when m
grows. For instance, when m = 1, it recovers around 10% of
the packets and 70% of the bits. However, when m = 7, it
recovers over 80% of the packets and 96% of the bits in the
session. The greedy-l strategies fill the gap between the two
extremes.

There is a difference between packet- and bit-level perfor-
mances. For the full rank and error-free strategies, their packet-
and bit-level performances are the same, because their decoding
strategies depend on A only, and are the same for all l’s
in Eq. (1). For the other four strategies, since their decoding
strategies depend on A as well as Vl, their packet- and bit-level
performances are different. Of course, their bit-level decoding
success fractions are better than their respective packet-level
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Fig. 3. Packet-level performance of different strategies using LP I
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Fig. 4. Bit-level performance of different strategies using LP I

decoding success fractions. This is because a packet-level
decoding success requires bit-level decoding successes for all
l’s in Eq. (1).

Compared with the full rank decoder, the average minimum
numbers of packets required for success decoding for the error-
free and best-effort strategies are approximately 10% and 20%
smaller, respectively. Assuming that the received packets arrive
in a uniform interval, this means that throughputs achieved by
the error-free and best-effort strategies are roughly 10% and
20%, respectively, higher than the full rank decoder. The actual
advantage may be more significant, because it takes longer
to receive a linearly independent packet when more received
packets already exist.

As expected, the linear programming decoders perform
slightly worse than the Hamming norm decoders. However,
the performance difference is negligible when the number of
received packets is large.
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