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ABSTRACT

We consider Alamouti encoding that draws symbols from M -ary
phase-shift keying (M -PSK) and develop a new differential modu-
lation scheme that attains full rate for any constellation order. In
contrast to past work, the proposed scheme guarantees that the en-
coded matrix maintains the characteristics of the initial codebook
and, at the same time, attains full rate so that all possible sequences
of space-time matrices become valid. The latter property is exploited
to develop a polynomial-complexity maximum-likelihood noncoher-
ent sequence decoder whose order is solely determined by the num-
ber of receive antennas. We show that the proposed scheme is supe-
rior to contemporary alternatives in terms of encoding rate, decoding
complexity, and performance.

1. INTRODUCTION

Orthogonal space-time block codes (OSTBCs) [1], [2] achieve
full antenna-diversity gain with linear-complexity single-symbol
maximum-likelihood (ML) coherent detection; i.e., when channel
state information (CSI) is available at the receiver [2], [3]. However,
when OSTBCs are used and the receiver has no CSI, ML noncoher-
ent sequence detection has to be performed on the entire coherence
interval for optimal performance [3]-[8]. If sequence detection is
performed through exhaustive search among all possible data se-
quences, then exponential computational complexity is required.
Moreover, the use of rotatable OSTBCs, such as the Alamouti
codes, gives rise to a phase ambiguity in the M -ary quadratic form
or trace maximization problem to which most of the aforementioned
detectors are induced [9]. Interestingly, by means of differential
space-time modulation (DSTM), this ambiguity problem can be
easily resolved (see [10] and [11], based on the DSTM initially
introduced in [12], [13]). However, all these schemes appear to
be inefficient in terms of both transmission rate and computational
complexity at the detector. In [14], ML noncoherent detection of
full-rate QPSK OSTBC encoded data was proposed, which, how-
ever, utilizes a Viterbi decoder with prohibitive computational cost.

In this work, we propose for the first time a full-rate differen-
tial M -ary phase-shift keying (M -PSK) Alamouti scheme that also
allows ML noncoherent sequence detection in polynomial time and
does not suffer from code-induced ambiguity under Rayleigh fading.
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Social Fund ESF) and Greek national funds through the Operational Pro-
gram “Education and Lifelong Learning” of the National Strategic Refer-
ence Framework (NSRF) Research Funding Program THALES: Investing in
knowledge society through the European Social Fund.

We tailor to our detection problem the algorithm in [15] and obtain
a polynomial-time solution. We note that the polynomial complex-
ity order is solely determined by the number of antennas used at the
receiver. This is in sharp contrast to sphere-decoding approaches for
ML blind detection [6], [7] that have exponential complexity.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider transmission of Alamouti matrices built upon M -
PSK symbols. Each transmitted matrix C(a) corresponds to a

2 × 1 symbol vector a =
[
a1 a2

]T ∈ A2
M , where AM

4
=

{ej2πm/M |m = 0, 1, . . . ,M − 1} and M ∈ {2k | k = 1, 2, . . . },
and is given by

C(a) =

[
a1 a2

−a∗2 a∗1

]
. (1)

Notice that Alamouti matrices are scaled unitary: CH(a)C(a) =
C(a)CH(a) = 2I2. The communicated M -PSK sequence s of
length, say, 2P is split into P 2 × 1 vectors s(0), s(1), . . . , s(P−1)

which form the corresponding matrices C(s(0)), C(s(1)), . . . ,

C(s(P−1)) that are successively transmitted. We assume that the
receiver is employed with D antennas and the channel remains sta-
ble during the interval of P successive Alamouti transmissions. The
downconverted and pulse-matched equivalent ith received block of
size D × 2 is

Y(i) = HC(s(i)) + V(i) (2)

where H ∈ CD×2 represents the channel matrix between the 2
transmit and D receive antennas and consists of i.i.d. coefficients
that are modeled as zero-mean circular complex Gaussian random
variables with variance σ2

h and account for Rayleigh flat fading.
V(i) ∈ CD×2 denotes zero-mean additive spatially and tempo-
rally white circular complex Gaussian noise matrix with covariance
σ2
vID . The channel and noise matrices H and V(i), respectively, are

independent of each other.
In this work, we consider the channel matrix H to be unavail-

able to the receiver. Hence, the ML receiver takes the form of a
sequence detector. We consider a sequence of P matrices consecu-
tively transmitted by the source and collected by the receiver in the
form of matrices Y(0),Y(1), . . . ,Y(P−1) and form the D × 2P
observation matrix

Y
4
=
[

Y(0) . . . Y(P−1)
]
= HG(s) + V (3)
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where V
4
=
[

V(0) . . . V(P−1)
]

and G(s) is the concate-
nated matrix of the transmitted Alamouti matrices

G(s)
4
=
[

C(s(0)) . . . C(s(P−1))
]
∈ C2×2P (4)

that satisfies the orthogonality property G(s)GH(s) = 2P I2. The
ML detector makes the decision

ŝ = arg max
s∈AM

2P

f(Y|s) = arg max
s∈AM

2P

f(y|s) (5)

where y
4
= vec(Y) ∈ C2DP and f(·|·) represents the pertinent ma-

trix/vector probability density function of the channel output con-
ditioned on a symbol sequence. After algebraic computations and
using vec(ABC) = (CT ⊗A)vec(B) [16], the optimization prob-
lem in (5) is rewritten as

ŝ = arg max
s∈AM

2P

1

π2DP |Cy (s) |
exp{−yHC−1

y (s)y}. (6)

where Cy (s) = σ2
h

(
GT (s)⊗ ID

)
(G∗ (s)⊗ ID) + σ2

vI2DP .
Next, using Sylvester’s determinant theorem and Sherman-Morrison-
Woodbury formula [17], we rewrite the maximization problem in
(6) as

ŝ = arg max
s∈AM

2P

‖ (G∗(s)⊗ ID)y‖2. (7)

A natural approach to (7) would be an exhaustive search among all
M2P symbol sequences s ∈ AM 2P . However, such a receiver has
two major drawbacks. First, it is impractical even for moderate val-
ues of P , since its complexity grows exponentially with P and, sec-
ond, it suffers from inherent phase ambiguity, risen by the rotatabil-
ity of Alamouti codes. To clarify the ambiguity concept, we provide
the following analysis.

We consider ŝ1 ∈ AM 2P to be a solution to the maximization
problem in (7) and C(ŝ

(0)
1 ), C(ŝ

(1)
1 ), . . . ,C(ŝ

(P−1)
1 ) to be the cor-

responding optimal Alamouti matrix sequence. Due to characteris-
tic rotatability of Alamouti matrices [9], [18], there always exists at
least one 2 × 2 unitary rotation matrix Θ 6= I2, so that ΘC(ŝ

(0)
1 ),

ΘC(ŝ
(1)
1 ), . . . ,ΘC(ŝ

(P−1)
1 ) is a valid Alamouti code sequence too,

corresponding, however, to a different M -PSK symbol sequence,
say ŝ2. Evidently, for all k ∈ {1, 2, . . . , P − 1},

CH(ŝ
(k−1)
1 )C(ŝ

(k)
1 ) = CH(ŝ

(k−1)
2 )C(ŝ

(k)
2 ), (8)

which, by (4), yields GH(ŝ1)G(ŝ1) = GH(ŝ2)G(ŝ2) and

‖(G∗(ŝ1)⊗ ID)y‖ = ‖(G∗(ŝ2)⊗ ID)y‖. (9)

In fact, (8) is a sufficient and, with probability 1 (w.p.1), necessary1

condition for ŝ2 to solve (7) as well. Certainly, phase ambiguity can
be resolved by differential modulation at the transmitter according
to [13] which, however, reduces the encoding rate and imposes con-
straints on the validity of the sequences that are considered in the
optimization problem in (7). In Section III, we develop a novel dif-
ferential modulation scheme for the resolution of this ambiguity that
(i) attains full rate for any constellation order and (ii) guarantees that
the encoded matrix maintains the characteristics of the initial code-
book so that all possible sequences of Alamouti matrices become
valid. Then, based on recent results in the context of reduced-rank

1It can be shown that P{‖(G∗(ŝ1) ⊗ ID)y‖ = ‖(G∗(ŝ2) ⊗
ID)y‖ |GH(ŝ1)G(ŝ1) 6= GH(ŝ2)G(ŝ2)} = 0.

quadratic-form maximization over an M -PSK alphabet, in Section
IV we exploit the full-rate property of the proposed scheme to de-
velop a polynomial-complexity ML noncoherent sequence detector
which performs the maximization in (7) with O

(
(MP )4D

)
calcu-

lations.

3. FULL-RATE DIFFERENTIAL ALAMOUTI ENCODING
AND UNIQUE SEQUENCE DECODING

3.1. A Systematic Classification of Alamouti Matrices

We commence our developments by presenting and analyzing a par-
ticular systematic partitioning of the set of all Alamouti matrices
(defined upon an M -PSK constellation)

C 4= {C(a) : a ∈ A2
M}. (10)

Thereafter, we exploit these properties to design a full-rate differen-
tial Alamouti encoding scheme.

To begin with, we introduce the 2M primary rotation matrices

Rm,γ
4
=

[
µm γµm

−γµ−m µ−m

]
, (11)

m = 0, 1, . . . ,M − 1, γ = ±1, where µ
4
= ej2π/M . By construc-

tion, for any m = 0, 1, . . . ,M − 1 and γ = ±1, Rm,γ is a complex
rotation matrix; that is, Rm,γ is scaled unitary and det(Rm,γ) = 1.
Accordingly, we define the primary rotation set

R 4=
M−1⋃
m=0

{Rm,1,Rm,−1} (12)

that consists of all rotation matrices constructed by (11). The fol-
lowing lemma comprises the basic properties of the primary rotation
set. Its proof is omitted due to lack of space.

Lemma 1 The primary rotation set consists of 2M distinct complex
rotation matrices and is closed under negation and conjugation; that
is, for any m ∈ {0, 1, . . . ,M − 1} and γ ∈ {−1, 1}, −Rm,γ ,

R∗m,γ ∈ R. Moreover,RHR = BR, where B
4
=

[
1 −1
1 1

]
.

Next, we proceed with the classification synthesis by defining the M
2

secondary rotation matrices

Tm
4
=

1

2

[
1 + µ−m µm − 1

1− µ−m µm + 1

]
, (13)

m = 0, 1, . . . , M
2
− 1, and the accordingly formed secondary rota-

tion set

T 4= {T0,T1, . . . ,TM
2
−1}. (14)

For anym, l ∈ {0, 1, . . . , M
2
−1}, Tm is a complex rotation matrix,

while Tm 6= Tl if m 6= l. Hence, the cardinality of the secondary
rotation set equals M

2
. By combining the primary and secondary

rotation sets, we define the M
2

code sets

Cm
4
= RTm, (15)
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m = 0, 1, . . . , M
2
− 1. In the sequel, Lemmas 2 and 3 describe

the code sets defined in (15) and pave the way for Theorem 1 which
concludes our systematic partitioning of C. The proofs of Lemmas 2
and 3 are omitted due to lack of space.

Lemma 2 For anym ∈ {0, 1, . . . , M
2
−1}, code set Cm consists of

2M distinct M -PSK Alamouti matrices.

Lemma 3 Code sets C0, C1, . . . , CM
2
−1 are disjoint; that is, Cm ∩

Cl = ∅ if m 6= l.

In view of the code set definition and Lemmas 2 and 3, the following
theorem holds true.

Theorem 1 C can be perfectly partitioned into the M
2

disjoint code
sets defined in (15).

As a follow-up to Theorem 1, we note that

C = {RT0,RT1, . . . ,RTM
2
−1} = RT . (16)

With the establishment of Theorem 1, the proclaimed systematic
classification of the Alamouti matrices defined upon a certain M -
PSK constellation is complete. Next, we switch our attention from
design to analysis.

For any M -PSK Alamouti matrix A ∈ C, we call F ∈ C2×2

a valid transition matrix for A, if and only if AF ∈ C. Since C
consists of scaled unitary matrices (AHA = AAH = 2I, for all
A ∈ C), the M2 valid transition matrices for a specific Alamouti
matrix A ∈ C form set 1

2
AHC. At this point, we define the mth

set-transition set Fm as the set of all valid transition matrices for all
Alamouti matrices in the mth code set Cm, m = 0, 1, . . . , M

2
− 1;

that is,

Fm
4
=

⋃
A∈Cm

1

2
AHC, (17)

m = 0, 1, . . . , M
2
− 1. Following Lemma 1, the definition of the

code sets in (15), and Theorem 1, we can re-express the mth set-
transition set as Fm = 1

2
CHmC = 1

2
TH
mRHRT = 1

2
TH
mBRT ,

m = 0, 1, . . . , M
2
− 1. We observe that, since both B and Tm

are unitary matrices, |C| = |RT | = |Fm| = M2, for any m =
0, 1, . . . , M

2
− 1, where |S| denotes the cardinality of set S. This

conclusion, along with the union definition of Fm in (17), verifies
the following lemma.

Lemma 4 For any m ∈ {0, 1, . . . , M
2
− 1}, the elements of Fm

are valid transition matrices for all Alamouti matrices in Cm; that
is, CmFm = C, m = 0, 1, . . . , M

2
− 1.

Subsequently, we aim at exploring the correlations among the set-
transition sets. In this direction, we define the compound transition
set as the set of the valid transition matrices for all Alamouti matrices
in C; that is,

F 4=
⋃
A∈C

1

2
AHC. (18)

In view of (16), the compound transition set can be re-expressed as
F = 1

2
CHC = T HRHRT = T HBRT . Thus, |F| ≤ |T ||RT | =

M3/2 and, in the nontrivial case M > 2, there certainly exist more

than one transition matrices in F that appear in more than one set-
transition sets2; in other words, the set-transition sets are overlap-
ping. In fact, a rigorous study on their intersections results in the
following lemma, the proof of which is omitted due to lack of space.

Lemma 5 The intersection of any two set-transition sets consists
of exactly 2M matrices; that is, |Fk ∩ Fl| = 2M , for all l ∈
{0, 1, . . . , M

2
− 1} and k ∈ {0, 1, . . . , M

2
− 1} \ l.

Next, we introduce the global transition set

G 4=
M−1⋃
l=0

{[
µl 0

0 µ−l

]
,

[
0 µl

−µ−l 0

]}
. (19)

Evidently, the cardinality of G is 2M and CG = C, since, for all
A ∈ C and G ∈ G, AG ∈ C. Hence, for all l ∈ {0, 1, . . . , M

2
−1},

Fl∩G = G and for all k ∈ {0, 1, . . . , M
2
−1}\l, G ⊆ Fk∩Fl. This

conclusion, along with Lemma 5, verifies the following theorem,
which brings to an end our analysis on the properties of the presented
classification of Alamouti matrices.

Theorem 2 G is a subset of all set-transition sets, while each of the
transition matrices inF\G may belong to one and only set-transition
set.

An alternative way Theorem 2 can be interpreted is Fl ∩ Fk = G,
for all l ∈ {0, 1, . . . , M

2
− 1} and k ∈ {0, 1, . . . , M

2
− 1} \ l.

3.2. Differential Alamouti Encoding

To initialize transmission, the transmitter sends an arbitrary Alam-
outi matrix C(s(0)) ∈ C that conveys no information. Thereafter,
the transmission procedure resumes as follows.

The kth Alamouti matrix transmitted is differentially defined as

C(s(k)) = C(s(k−1))Dk, (20)

k = 1, 2, . . . , P − 1, where Dk is the kth, so called, transition
code and conveys the information bits for the kth block transmis-
sion. Certainly, if one makes no use of the encoder’s knowledge on
the previously transmitted code, the set of all candidate transition
codes for the kth Alamouti transmission must be a subset of G, so
that C(s(k)) is guaranteed to be a valid Alamouti matrix. Hence, the
number of information bits that can be encoded is upper bounded by
log2 2M , a bound that is met if all matrices in G are available for
the kth transition. Evidently, this memoryless method, considered to
be the state-of-the-art differential Alamouti encoding scheme [13],
imposes significant rate degradation by restricting the number of
possible Alamouti matrices for the kth transmission to 2M : given
C(s(k−1)), C(s(k)) may only belong to the subset of C that is reach-
able by C(s(k−1)) using solely global transition matrices.

In the proposed differential Alamouti encoding method, contrary
to any other proposed scheme, the transmitter exploits its knowledge
on the previously transmitted block in the transition code selection
process to achieve differential encoding of 2 log2M bits per Alam-
outi transmission. Being aware of C(s(k−1)) and, hence, the code-
group it belongs, the encoder is able to choose Dk from the entire re-
spective set-transition set of cardinality M2; that is, if C(s(k−1)) ∈
Cl, for some l ∈ {0, 1, . . . , M

2
− 1}, any matrix from Fl can be

utilized for the kth transition, providing the essential guarantee that
C(s(k)) will belong in C.

2For M = 2, F = F0 = 1
2
BR and |F| = |R| = 2M = M3/2.
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Input:
D: The set of all bit sequences of length 2 log2 M .
F0, F1, . . . , FM

2 �1: The M
2 set-transition sets.

G: The set of global transition matrices.
Initialization:
DG, D0, D1, . . . , DM

2 �1 = ;.
Step 1:
For all F 2 G

Choose arbitrarily a bit sequence b 2 D \ DG and assign it to F.
Update DG = DG [ {b}.

Set D0, D1, . . . , DM
2 �1 = DG.

Step 2:
For l = 0, 1, . . . , M

2 � 1
For all F 2 Fl \ G

Choose arbitrarily a bit sequence b 2 D \Dl and assign it to F.
Update Dl = Dl [ {b}.

Output:
An instance of the full-rate codebook.

1

Fig. 1: The algorithm for the construction of a full-rate codebook.

3.3. Unambiguous Decodability of the Sequence Detector

To initialize the decoding process, the receiver makes a decision
ŝ ∈ AM 2P on the transmitted symbol sequence using the ML
detector in (7). Then, it builds the respective Alamouti sequence
C(ŝ(0)),C(ŝ(1)), . . . ,C(ŝ(P−1)) and, in accordance with the dif-
ferential encoding procedure, computes the kth information-bearing
transition code by

D̂k =
1

2
CH(ŝ(k−1))C(ŝ(k)), (21)

k = 1, 2, . . . , P − 1. In view of (8), all equivalently optimal, in
terms of (7), symbol sequences will correspond w.p.1 to the same
information-bearing transition code sequence D̂1, D̂2, . . . , D̂P−1.
At this point, we exploit the properties of the introduced system-
atic classification of Alamouti matrices to deliver an algorithm for
the construction of a differential encoding/decoding codebook that
will allow for the unambiguous decoding of the detected Alamouti
sequence. The codebook construction algorithm lies in Fig. 1.

This codebook design guarantees that, in every set-transition set,
each of the M2 bit sequences of length 2 log2M will be assigned
to a distinct transition matrix. Moreover, each transition matrix in
F will correspond to a unique bit sequence, regardless of the set-
transition set(s) it appears in. Thus, the kth detected transition code
D̂k, k = 1, 2, . . . , P − 1, will be unambiguously decoded by be-
ing mapped to a distinct bit sequence of length 2 log2M . That is,
maximal differential rate equal to R = 2 log2M

2
= log2M bits

per transmit antenna is attained. This is in sharp contrast to con-
ventional differential Alamouti encoding scheme [13] that utilizes
solely global transition codes and achieves differential rate equal to
log2
√
2M bits per transmit antenna.

4. ML SEQUENCE DETECTION WITH POLYNOMIAL
COMPLEXITY

In this section, we prove that the complexity of the ML sequence
detector in (7) can be polynomial in the sequence length P . Inter-
estingly, the order of the polynomial complexity depends strictly on
the number of antennas used at the receiver. We begin our develop-
ments by observing that the concatenated matrix of the transmitted

0 2 4 6 8 10 12 14 16 18 20

10−1

100

 

 

Power Budget (dB)

Bi
t−

Er
ro

r−
R

at
e

Conventional [11]
Proposed 

Fig. 2: BER versus overall power budget for the communication of
36 bits (M = 4, D = 1, σ2

h = 1, and σ2
v = 1).

Alamouti codes, introduced in (4), can take the form

G (s) =

[
s

(
IP ⊗

[
0 1

−1 0

]T)
s∗

]T
. (22)

Then, using vec(ABC) = (CT ⊗ A)vec(B) [16] and (22), we
rewrite the maximization argument in (7) as

‖ (G∗(s)⊗ ID)y‖2 = ‖ΓHs‖2

where Γ
4
=

[
YT

(
IP ⊗

[
0 1

−1 0

])
YH

]
∈ C2P×2D .

Finally, the ML sequence detector in (7) becomes

ŝ = arg max
s∈AM

2P

sHΓΓHs. (23)

For P ≥ D, rank (Γ) ≤ 2D and the the rank of the quadratic form
in the maximization argument of (23) is not a function of the prob-
lem size. In the light of this analysis, we tailor to (23) the algorithm
presented in [15] for the problem of rank-deficient quadratic form
maximization over M -phase alphabet and establish that the initial
ML sequence detection problem of (7) is, in fact, solvable in poly-
nomial time O((MP )4D). The order of the polynomial is solely
dictated by the number of antennas at the receiver.

5. SIMULATION STUDIES

Subsequently, we carry out a simulation study on the bit-error rate
(BER) performance of the proposed differential modulation scheme.
We consider the signal model described in Section II, for M = 4,
D = 1, σ2

h = 1, and σ2
v = 1 and attempt the communication of

36 bits under fixed power budget, uniformly distributed among the
consecutive Alamouti transmissions. In Fig. 2, we plot the BER
attained by the proposed scheme over 1 000 independent simula-
tion runs, as a function of the overall power budget. For reference
purposes, we include the respective plot for the conventional rate-
deficient differential modulation scheme (see [13], Ex. 3). Clearly,
for intermediate and high power budget, the proposed differential
scheme outperforms significantly its conventional counterpart, due
to its rate efficiency. As per-bit power budget decreases, although
the rate-driven BER advantage of the proposed scheme diminishes,
its bandwidth efficiency merits are maintained.
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