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ABSTRACT

This paper considers constant envelope (CE) precoding in single-
user MISO downlink systems. CE precoding is a transmission
scheme recently proposed for very large antenna arrays, in which
the use of highly power-efficient RF amplifiers is a requirement.
There are two important issues in CE precoding, namely the char-
acterization of the region of all possible noise-free receive signals,
and the recovery of the phases of the transmitting signal. An ex-
isting result by Mohammed and Larsson showed that the noise-free
receive signal region can be geometrically interpreted as a region
between two circles centered at the origin of the complex plane.
However, this result did not prove the expression of the radius of
the inner circle. We provide a new analysis approach to character-
ize the noise-free receive signal region. Our result shows that the
radius of the inner circle has a simple closed-form expression, there
by completing the result by Mohammed and Larsson. In addition,
we propose an algorithm that can recover the phases of the trans-
mitting signal exactly with a complexity linear in the number of
antennas. Simulation results show that the proposed method can be
significantly faster than an existing phase recovery algorithm.

Index Terms— Large antenna array, constant envelope, dough-
nut channel

1. INTRODUCTION

Recently, there has been an increasing interest in employing large
antenna array at the base station in wireless communications [1, 2,
3, 4]. The large antenna array, which can have more than 100 an-
tenna elements, enables higher spectral efficiency, better reliability,
and simpler transmit/receive processing [5]. But the practical imple-
mentation of the large antenna array requires highly power-efficient
RF amplifiers that can be cheaply implemented, as the large antenna
array is equipped with a large number of RF amplifiers [6]. The
power efficiency of an RF amplifier is largely limited by the linear
range required by the transmitting signal. For the traditional pre-
coding method, such as maximum ratio transmission (MRT), the in-
stantaneous power can vary significantly depending on the channel
conditions and the information symbols to be transmitted. Hence,
the transmitting signal can have a very high peak-to-average power
ratio (PAPR). The RF amplifier that is designed for such high PAPR
transmitting signals must have a wide linear range to accommo-
date the large variations of the signal level, thus inevitably result-
ing in low power efficiency. In order to overcome this problem, it
is proposed in [6, 7] to adopt the constant envelope (CE) precoding
scheme. In CE precoding, the transmitting signal at each antenna is
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restricted to have a constant amplitude, and only the phases of the
per-antenna transmitting signals are used to convey information to
the receiver. Since the CE signal has a constant amplitude, the in-
stantaneous power is fixed as a constant as well. Therefore, the RF
amplifier for CE signals can be made highly power-efficient.

One important issue in CE precoding is the characterization of
the region of all possible noise-free receive signals. This characteri-
zation is very important as the design of the input constellation gen-
erally requires knowledge of this region. The pioneering work [6] by
Mohammed and Larsson shows that the noise-free receive signal re-
gion is a doughnut region, i.e. a region between two circles centered
at the origin of the complex plane. However, the result in [6] only
shows existence of the radius of the inner circle. In this paper, we
use a different analysis approach to characterize the receive signal
region, and prove the inner radius in closed form.

Another issue is how to design the phases of the CE signal cor-
responding to an information symbol. This amounts to solving a
highly nonlinear equation. As an alternative way to directly han-
dling this nonlinear equation, it is proposed in [6] to formulate an
optimization problem whose optimal solution is a solution of the
nonlinear equation. A combination of depth-first-search (DFS) and
gradient descent is proposed in the same reference for tackling the
optimization problem. Our second contribution is to derive an ex-
act and efficient algorithm for the CE precoding design. The algo-
rithm is a direct consequence of our first contribution, analysis of
the CE receive signal region. Simulation results will show that the
proposed algorithm is much faster than the gradient descent method.
Moreover, CE precoding will be illustrated to provide about 2.5dB
performance gain compared to MRT, when taking into account the
different power efficiencies of RF amplifiers for CE and MRT.

2. SYSTEM MODEL AND PROBLEM FORMULATION

2.1. System Model and Problem Statement

A standard single-user MISO downlink model is considered:

y = d+ ν, (1)

d = hTx, (2)

where y ∈ C is the receive signal, d the noise-free receive signal,
h = [h1, . . . , hN ]T ∈ C

N the channel vector, x = [x1, . . . xN ]T ∈
C

N the transmitting signal, and ν ∈ C AWGN with zero mean and
variance σ2

ν . Here, N is the number of transmit antennas.
From (1) we can see that from the perspective of the receiver, the

model (1) is essentially an SISO channel with d being the channel
input. Suppose that the equivalent SISO channel input constellation
has been chosen as Q = {d(m)}Mm=1 (e.g., QAM). For convenience,
we also write Q = αS, where α > 0 is a coefficient and S is a nor-
malized constellation with unit power, i.e. Es∈S [|s|2] = 1. The goal
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of a precoder is to design a transmitting signal x(m) corresponding
to each d(m) such that d(m) = hTx(m) is satisfied.

A simple, convenient way to carry out the precoding task men-
tioned above is maximum ratio transmission (MRT). MRT is a linear
scheme where the transmitting signal xMRT and the coefficient αMRT

are given by

xMRT =
√
PT

h∗

‖h‖2 s, αMRT =
√
PT ‖h‖2, (3)

where s ∈ S is an information symbol, and PT is the average to-
tal transmission power. We can see that the average per-antenna
power is equal to a constant E[|xMRT,i|2] = PT

N
for an i.i.d fading

channel. However, the instantaneous per-antenna power, depend-
ing on the realization of h and s, may vary dramatically from zero
to maxs∈S PT |s|2. In order to accommodate the large variations of
the instantaneous per-antenna power, the RF amplifier built for MRT
signals must have a very wide linear region, inevitably leading to a
low power efficiency. The power efficiency for such highly linear
RF amplifier is typically about 0.15− 0.25 [6, 8].

The difficulty in using highly power-efficient RF amplifiers for
large antenna array systems has recently motivated the use of con-
stant envelope (CE) signals for transmission [6]. CE precoding is
a nonlinear scheme (with respect to the information symbol). In
essence, we constrain the transmitting signal xi of each antenna to
take the form of

xi =

√
PT

N
ejθi , for i = 1, . . . , N, (4)

where j =
√−1, and θi ∈ [0, 2π) is the phase of xi. In contrast

to MRT, the instantaneous power of CE signal xi is fixed at |xi|2 =
PT
N

, which is independent of the channel realization and information
message. Hence, the RF amplifiers for CE signals can have a high
power efficiency ranging from 0.75 to 0.85 [6, 8].

While the CE signal (4) enables the use of highly power-efficient
RF amplifiers, it also presents new challenges. The first challenge
is the characterization of the set of all possible noise-free receive
signal, which is defined as

D �
{√

PT

N

N∑
i=1

hie
jθi

∣∣∣∣∣ θi ∈ [0, 2π), i = 1, . . . , N

}
. (5)

The motivation for characterizing D is that the design of the input
constellation Q depends on D, since Q must belong to D. If D is
not known, then it would become unclear how to choose Q.

The second challenge is the phase recovery problem. Once Q
has been designed, for each d in Q, we need to recover a correspond-
ing phase vector θ = [θ1, . . . , θN ]T , i.e. a phase vector θ satisfying
the following equation

d =

√
PT

N

N∑
i=1

hie
jθi . (6)

Unlike the MRT which is a linear precoding scheme, CE precoding
has a highly nonlinear relationship between the noise-free receive
signal d and the phase vector θ. This nonlinear phase recovery prob-
lem introduces a challenge in efficient CE precoding in practice.

2.2. Prior Works and Contributions

The pioneering work [6] by Mohammed and Larsson shows that D
is a doughnut region given by

D = {d ∈ C | r ≤ |d| ≤ R}, (7)

where r and R are scalars depending on h. Moreover, r and R are
shown in the same reference to satisfy

r ≤
√

PT

N
‖h‖∞, R =

√
PT

N
‖h‖1. (8)

However, the exact value of r is not known. In this paper, by re-
sorting to an induction argument, we show that r can be computed
in closed form, thereby completing the result of [6]. Moreover, we
show that with very high probability, r is zero in large antenna array
systems with i.i.d circular complex Gaussian channel.

The authors in [6] also considered the phase recovery problem
(6). Instead of handling (6) directly, the phase recovery problem is
formulated as an optimization problem

min
θ

∣∣∣∣∣d−
√

PT

N

N∑
i=1

hie
jθi

∣∣∣∣∣ . (9)

To solve problem (9), it is proposed in [6] to use the gradient descent
method for large N , and for small N (N ≤ 10), to use a two-step
algorithm which includes a discrete depth-first-search (DFS) and a
gradient descent method. In this paper, our proof of the characteriza-
tion of D reveals a much more straightforward way for CE precoding
— an exact closed-form solution exists for the phase recovery prob-
lem (6). In particular, the complexity of this new closed-form solu-
tion is O(N), which can be very efficiently implemented in practice.

3. MAIN RESULTS

In this section we provide the characterization of the noise-free re-
ceive signal region D and propose an exact phase recovery algo-
rithm. For notational convenience in the subsequent development,
denote for i = 1, . . . , N ,

gi =
√

PT
N

|hi|, φi = θi + αi,

where αi is the argument of hi. Then, (6) and (5) can be equivalently
expressed as

d =
N∑
i=1

gie
jφi (10)

D =

{
N∑
i=1

gie
jφi

∣∣∣∣∣φi ∈ [0, 2π), i = 1, . . . , N

}
. (11)

Without loss of generality, we assume that g1 and g2 are respectively
the first and the second largest elements in {gi}Ni=1, i.e. g1 ≥ g2 ≥
gi ≥ 0 for i = 3, . . . , N . We also define, for i = 1, . . . , N ,

Di �
{
di =

i∑
j=1

gje
jφj

∣∣∣∣∣ φj ∈ [0, 2π), j = 1, . . . , i

}
. (12)

Physically, Di can be interpreted as the noise-free receive signal re-
gion when only the first i antennas are used. Note that DN = D.

3.1. Characterization of D
Theorem 1. For i = 1, . . . , N ,

Di = {di ∈ C | ri ≤ |di| ≤ Ri}, (13)

where Ri =
∑i

j=1 gj and ri = max{g1 −∑i
j=2 gj , 0}. In partic-

ular,
D = {d ∈ C | r ≤ |d| ≤ R}

where R =
∑N

j=1 gj and r = max{g1 −∑N
j=2 gj , 0}.
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Theorem 1 states that the radius ri is actually equal to the dif-
ference between the largest channel coefficient g1 and the sum of
the remaining channel coefficients

∑i
j=2 gj . With the complete

knowledge of D, one may design the constellation Q, which lies
in D, for optimizing the system utility. For example, one may opti-
mize Q for higher achievable data rate or smaller error rate perfor-
mance. As a side benefit of the characterization of D, one can easily
check whether or not (10) has a solution by checking the condition
r ≤ |d| ≤ R.

The proof of Theorem 1 is as follows. The main idea is to show
by induction from i = 1 to i = N that Di = {di ∈ C | ri ≤
|di| ≤ Ri}. For i = 1, this holds true obviously. For i = 2,
from the definition of D2 in (12), we can see that if d2 ∈ D2, then
r2 = g1 − g2 ≤ |d2| ≤ g1 + g2 = R2 by triangular inequality.
Conversely, if d2 satisfies g1 − g2 ≤ |d2| ≤ g1 + g2, then we need
to find (φ1, φ2) satisfying

d2 = g1e
jφ1 + g2e

jφ2 . (14)

It can be easily verified that the (φ1, φ2) given below is a solution,

φ1 = arccos

(
g21 + |d2|2 − g22

2g1|d2|
)
+ ω2

φ2 = arccos

(
g21 + g22 − |d2|2

2g1g2

)
+ φ1 + π

(15)

where ω2 is the argument of d2. Hence, (13) is true for i = 2.
For i ≥ 3, we need to invoke the following lemma which reveals

the relationship between Di and Di−1.

Lemma 1. Let

A = { x ∈ C | ra ≤ |x| ≤ Ra },
B = { y ∈ C | |y| = rb },
C = { z ∈ C | z = x+ y, x ∈ A, y ∈ B },

and suppose that
Ra − ra ≥ 2rb. (16)

Then, C is a doughnut region

C = { z ∈ C | rc ≤ |z| ≤ Rc },
with

rc = max{ra − rb, 0}, Rc = Ra + rb.

Moreover, for any z ∈ C, we can construct x ∈ A, y ∈ B such that
z = x+ y holds. Specifically, such (x, y) is obtained by setting

y =

{
rbe

jφz , |z| ≥ Ra − rb
rbe

j(φz+π), |z| < Ra − rb
(17)

and x = z − y, where φz denotes the argument of z.

By the definitions of Di and Di−1, Di can be written as

Di = {di ∈ C | di = di−1 + d̃i, di−1 ∈ Di−1, |d̃i| = gi}. (18)

Suppose that Di−1 is a doughnut region with radii ri−1 = max{g1−∑i−1
j=2 gj , 0} and Ri−1 =

∑i−1
j=1 gj . Then,

Ri−1 − ri−1 ≥ R2 − r2 = 2g2 ≥ 2gi,

which satisfies the premise (16) of Lemma 1. Applying Lemma
1 to (18), we have that Di is a doughnut region with radii ri =
max{ri−1 − gi, 0} = max{g1 − ∑i

j=2 gj , 0} and Ri = Ri−1 +

gi =
∑i

j=1 gj .

3.2. A probability bound on Pr{r > 0}
From the expression of r in Theorem 1, one may expect that for an
i.i.d. fading channel, r is actually zero with high probability when
N is large. Indeed, this is true for the i.i.d circular complex Gaussian
channel.

Proposition 1. Suppose that each element of h follows an i.i.d circu-
lar complex Gaussian distribution with zero mean and unit variance.
Then,

1

NN−2
≤ Pr{r > 0} ≤ 1

(N − 1)!
.

Proof. The proof is based on the direct integration of the distribution
of the ordered statistics of {|hi|}Ni=1 [9]. Details are omitted due to
space limit.

The pioneering work [6] has provided a similar result that
Pr{r ≥ c(logN)/

√
N} converges to zero as N goes to infinity for

all c > 0. We can see that the result in Proposition 1 provides a
better guarantee of r being zero. Proposition 1 states that Pr{r > 0}
decays factorially fast in N . For example, for N = 10, we have
Pr{r > 0} ≤ 3 × 10−7. For very large array systems, where N
could be more than 100, it is expected that Pr{r > 0} is virtually
zero. This indicates that with high probability, the doughnut region
is essentially a disk region. Therefore, the constellation Q = αS can
be simply designed by choosing S as a commonly used constellation
such as QAM, and choosing α as the largest positive number such
that αS belongs to D. More sophisticated methods of designing Q
can also be found in [10, 6, 11, 12].

3.3. Exact Phase Recovery

In this subsection, we propose an exact phase recovery algorithm for
(10) which has a linear complexity in the problem size N .

The main idea of the proposed algorithm can be derived from
our proof of Theorem 1. Assume that r ≤ |d| ≤ R, for otherwise

(10) has no solution by Theorem 1. Let dN � d. Observe from (18)
that if dN belongs to DN , then a φN exists such that dN − gNejφN

belongs to DN−1; again, a φN−1 exists such that (dN −gNejφN )−
gN−1e

jφN−1 belongs to DN−2. Repeating this argument, it can be
seen that dN can be decomposed in the form of dN =

∑N
i=1 gie

jφi .
Hence, it suffices to choose φi such that

di−1 � di − gie
jφi ∈ Di−1. (19)

from i = N down to i = 2. At the end of the process, the resultant
φ is a solution1 of (10).

The proof of Theorem 1 already offers a way to determine a φi

for (19). By (17) in Lemma 1, we can see that for i ≥ 3, φi can be
chosen as

φi =

{
ωi, if |di| ≥ Ri−1 − gi,

ωi + π, if |di| < Ri−1 − gi,
(20)

where ωi is the argument of di. For i = 2, by noting r1 = R1 = g1,
it can be seen that (19) is equivalent to the equation in (14). Then φ2

and φ1 can be chosen as (15).
We can see that the proposed algorithm only involves N steps

of operations. Hence, the complexity of the proposed algorithm is
O(N). The description of the proposed algorithm is complete, and
we provide the pseudo code in Algorithm 1.

1Note that φ1 is automatically obtained when choosing φ2 such that d2−
g2ejφ2 = d1, since d1 is of the form of d1 = g1ejφ1 .
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Algorithm 1: Exact phase recovery

input : d = |d|ejω , {gi}Ni=1 with
g1 ≥ g2 ≥ gi ≥ 0, ∀ i ≥ 3.

1 R =
∑N

j=1 gj ;

2 r = max{g1 −∑N
j=2 gj , 0};

3 if |d| > R or |d| < r then
4 return. (There is no solution);
5 end
6 dN = |d|;
7 for i ← N to 3 do
8 Ri−1 =

∑i−1
j=1 gj ;

9 if di ≥ Ri−1 − gi then
10 φi = ω;
11 di−1 = di − gi;

12 else
13 φi = ω + π;
14 di−1 = di + gi;

15 end
16 end

17 φ1 = ω + arccos
g21+d22−g22

2g1d2
;

18 φ2 = φ1 + π + arccos
g21+g22−d22

2g1g2
;

output: {φi}Ni=1

4. SIMULATIONS

In this section, we use simulations to demonstrate the performance
advantage of CE precoding over MRT, as well as the computational
efficiency of the proposed method over the gradient descent method.
In the simulations, the channel h is generated following an i.i.d cir-
cular complex Gaussian distribution with zero mean and unit vari-
ance. The constellation Q ⊂ D is chosen as a scaled version of the
16-QAM constellation. The SNR is defined as SNR = PT

ησ2
ν

, where

η is the power efficiency of the RF amplifiers. We use the Armijo
rule [13] for gradient descent, and we stop the algorithm when the
objective value of (9) is smaller than ε = 0.01.

In Table. 1, we compare the average running times of the pro-
posed method and the gradient descent method for solving (9). We
can see that the proposed algorithm is at least 50 times faster than
that of the gradient descent for all problem sizes tested.

Fig. 1 shows the symbol error rate for problem size N = 128.
The result is obtained by averaging over 106 channel realizations. It
can be seen that if the power efficiencies of MRT and CE are both
equal to one, MRT is better than CE precoding. This is expected
since CE precoding is a more restrictive way of transmission. How-
ever, we must take into account the different power efficiencies for
fair comparison. As suggested by [6, 8], η = 0.2 is chosen for
MRT and η = 0.8 is chosen for CE precoding, which amounts to
about 7dB and 1dB SNR penalty for MRT and CE precoding, re-
spectively. We can see that under this setting, CE precoding outper-
forms MRT by about 2.5dB. This demonstrates that CE precoding is
a very promising transmission technique in very large antenna array
communication.

5. CONCLUSION
In this paper, we provided a complete characterization of the dough-
nut region of CE precoding for single-user MISO channels, and
showed that the inner radius of the doughnut region is zero with
very high probability. We further proposed a very simple method

Problem size N
10 50 100 150 200

Gradient descent 3.1e-3 1.1e-2 2.2e-2 3.3e-2 3.7e-2

Proposed 7.8e-5 1.3e-4 1.9e-4 2.5e-4 3.1e-4

Table 1. Average running time (in seconds) of the gradient descent
and the proposed methods.
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Fig. 1. Symbol error rate comparison.

to exactly recover the phases of the CE signals. An interesting
extension is to apply CE precoding to multi-user MISO downlink
channels [7]. In this multi-user scenario, the characterization of
receive signals of all users and the phase recovery of the CE signal
remain open problems.

6. APPENDIX: PROOF OF LEMMA 1

First, we show that any z ∈ C must satisfy rc ≤ |z| ≤ Rc. For any
x ∈ A, y ∈ B, we have that

|x+ y| ≤ |x|+ |y| ≤ Ra + rb = Rc

and that

|x+ y| ≥ max{0, |x| − |y|} ≥ max{0, ra − rb}.
This means that rc ≤ |z| ≤ Rc must hold.

Next, we show that any z ∈ C, rc ≤ |z| ≤ Rc must lie in
C. The proof is by construction. We consider two cases, namely
|z| ≥ Ra − rb, and |z| < Ra − rb. For the case of |z| ≥ Ra − rb,
set

y = rbe
jφz , x = (|z| − rb)e

jφz .

It holds true that z = x + y, and that y ∈ B. The question left
is whether x ∈ A. We first observe that |x| ≥ |z| − rb ≥ Ra −
2rb ≥ ra, where the last inequality is due to (16). Moreover, we
have |x| = |z| − rb ≤ Rc − rb = Ra. Hence, x lies in A. For the
case of |z| < Ra − rb, set

y = rbe
j(φz+π), x = (|z|+ rb)e

jφz .

Again, since z = x + y and y ∈ B, we seek to show x ∈ A.
One can easily verify that |x| = |z| + rb ≥ rc + rb ≥ ra and
|x| = |z| + rb < Ra − rb + rb = Ra. Hence, x ∈ A is true.
We therefore conclude that any z ∈ C, rc ≤ |z| ≤ Rc, satisfies
z = x + y for some x ∈ A, y ∈ B, or equivalently z ∈ C. It is
also clear from the above proof that such (x, y) can be constructed
via (17) and x = y − z.
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