
PILOT DESIGN FOR MIMO CHANNEL ESTIMATION:
AN ALTERNATIVE TO THE KRONECKER STRUCTURE ASSUMPTION
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ABSTRACT
This work seeks to design a pilot signal, under a power constraint,
such that the channel can be estimated with minimum mean square
error. The procedure we derive does not assume Kronecker struc-
ture on the underlying covariance matrices, and the pilot signal is
obtained in three main steps. Firstly, we solve a relaxed convex ver-
sion of the original minimization problem. Secondly, its solution is
projected onto the feasible set. Thirdly we use the projected solution
as starting point for an augmented Lagrangian method. Numerical
experiments indicate that this procedure may produce pilot signals
that are far better than those obtained under the Kronecker structure
assumption.

1. PROBLEM STATEMENT

Consider the following multiple-input-multiple-output (MIMO) com-
munication model

z = Hs+w. (1)

Here z is the observed output, w is random noise, H is a random
channel matrix that we wish to estimate, and s is a pilot vector to
be designed for that purpose. In order to estimate H with some
confidence, we should typically send at least as many pilot vectors
at there are columns in H, although this is not strictly necessary
when the columns are strongly correlated [1]. In order to utilize the
channel estimate for subsequent data transmission, we also assume
that the time needed to transmit the pilots is only a fraction of the
coherence time. This assumption typically holds in flat, block-fading
MIMO systems [2, 3, 1]. With p transmitted pilots, model (1) can be
written in matrix form as

Z = HS+W. (2)

We assume that H ∈ C
m×n and that the pilot matrix S ∈ C

n×p.
Vectorizing equation (2) then gives [4, Lemma 2.11]

vec(Z)
︸ ︷︷ ︸

y

=
(

S
T ⊗ Im

)

︸ ︷︷ ︸

G

vec(H)
︸ ︷︷ ︸

x

+ vec(W)
︸ ︷︷ ︸

n

, (3)

where Im denotes the m × m identity matrix, the vec(·) operator
stacks the columns of a matrix into a column vector, ⊗ denotes the
Kronecker product, and (·)T denotes transposition. In this work,
we assume a Bayesian setting where a prior knowledge is available.
Specifically, we assume that the vectorized channel x and vectorized
noise n are independent and circular symmetric complex Gaussian
distributed as

x ∼ CN (ux,Cxx) (4)

n ∼ CN (un,Cnn) . (5)

The estimator for x which has minimum mean square error (MMSE)
is the mean of the posterior distribution, which is given by [1]

ux +
(

C
−1
xx +G

H
C

−1
nnG

)
−1

G
H
C

−1
nn (y −Gux − un) .

Here, (·)H denotes the complex conjugate transpose. The MMSE
associated with this estimator is given by the trace of the posterior
covariance matrix,

Tr
((

C
−1
xx +G

H
C

−1
nnG

)
−1
)

, (6)

where Tr (·) denotes the trace operator. When designing S in (3), our
objective is to estimate x from the observation y with as small MSE
as possible. As constraint, we will impose a total power limitation
on the transmitted pilots. Utilizing (6), and G = ST ⊗ Im, this
optimization problem can be formulated as

min
S

Tr

((

C
−1
xx +

(

S
T ⊗ Im

)H

C
−1
nn

(

S
T ⊗ Im

))−1
)

(7)

s.t. ‖S‖2
2
, Tr

(

S
H
S
)

≤ σ. (8)

The objective function in (7) is MMSE, for a given S. The constraint
in (8) represents an upper bound on the squared Frobenius norm of
S.

2. BACKGROUND AND MOTIVATION

The literature on pilot design for MIMO channel estimation is rich,
because (7)-(8) is a non convex problem and therefore difficult to
optimize without making limiting assumptions. This work offers an
alternative approach to those works that assume Kronecker struc-
ture on Cxx and Cnn. The Kronecker structure assumption is the
assumption that the covariance matrices in (4) and (5) factorize as
Kronecker products [1]:

Cxx = X
T
T ⊗XR and Cnn = N

T
T ⊗NR. (9)

Here, XR is the spatial covariance matrix at the receiver, and XT

is at the transmitter. Similarly, NT is the temporal noise covariance
matrix, and NR is the spatial noise covariance matrix.

Such Kronecker factorizations allow for tractable analysis. More-
over, exploiting the Weichselberger channel model [5], it has been
demonstrated in [1] that this assumption may provide good pilots
even when the Kronecker structure does not hold. In general, how-
ever, assuming Kronecker structure imposes quite severe restrictions
on the spatial correlation of the MIMO channel [6]. The main reason

5061978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



−2

−1

0

1

2

−2

−1

0

1

2
4

6

8

10

12

14

16

S(1,1)S(2,2)

M
M

S
E

Fig. 1. Example of MMSE when S ∈ R
2×2, ‖S‖2

2
≤ 4 and S is

restricted to be a diagonal matrix.

is that arbitrary covariance matrices do generally not factorize like
this. Therefore, the present works avoids this assumption, and offers
an alternative approach.

For smooth optimization problems, as described by (7), (8), we
can arrive at a solution that is at least first order optimal (zero gra-
dient), from an arbitrary initial starting point [7]. The challenge is
that our problem is generally not convex in S, and the number of
local minima may be large. Therefore, we propose a procedure that
most often provides a better starting point than a completely random
one. From this starting point, we proceed iteratively towards a local
minimum. Briefly the idea goes as follows. First, we solve a re-
laxed convex version of the original optimization problem. Next, we
project that solution onto the nearest candidate in the feasible set. Fi-
nally we move iteratively from the projected solution towards a local
minimizer by employing an augmented Lagrangian method. These
three steps are described in the next three sections, respectively.

Before proceeding, we mention that our approach does not al-
ways produce the best pilot matrix. In some scenarios, the pilot ma-
trix resulting from the Kronecker structure assumption, e.g. [1], may
prove better. This should not be considered a problem; we merely
provide the designer with an alternative pilot matrix. Equipped with
alternatives, the designer can compute the MMSE associated with
each alternative, and simply choose the best one. This is valuable,
especially when the channel and noise processes are stationary.

3. A RELAXED CONVEX PROBLEM

It is not difficult to generate examples showing that the problem de-
fined by (7) and (8) is generally not convex in S. Fig. 1 illustrates
one case, when S ∈ R

2×2, ‖S‖2
2
≤ 4 and S is restricted to be di-

agonal. The implication is that we must generally contend with a
local minimizer. Such a minimizer tends to depend critically on the
starting point. This section therefore derives a starting point which
in many cases is better than an arbitrary one.

Note from (3) that a power constraint on the pilots ‖S‖2
2
≤ σ,

transfers into a corresponding power constraint ‖G‖2
2
≤ γ = mσ.

If we now consider the latter constraint only, and disregard the fact
that any feasible G ∈ C

pm×nm must factorize as ST ⊗ Im, we may

formulate the following relaxed optimization problem

min
S

Tr
((

C
−1
xx +G

H
C

−1
nnG

)
−1
)

(10)

s.t. Tr
(

G
H
G
)

≤ γ. (11)

This problem has a convex structure, which will become clear shortly.
Its solution, which can be efficiently obtained, must then be pro-
jected on to the set of feasible G:s, defined by

G :=
{

G = S
T ⊗ Im, where ‖S‖2

2
≤ σ

}

. (12)

Finally the result of the projection is treated as a starting point, and
updated iteratively towards a local minimum. Note that this ap-
proach, in contrast to [1], allows for completely arbitrary covariance
matrices.

The remainder of this section presents the solution for the prob-
lem defined by (10) and (11), where G can have arbitrary structure.
We assume that G ∈ C

r×c = C
pm×nm. Observe that Cxx is

nm × nm and Cnn is pm × pm. We introduce the following sin-
gular value decompositions (SVD)

Cxx = UxΣxU
H
x , C

−1
nn = UnΣ

−1
n U

H
n , (13)

with

Σx(1, 1) ≥ Σx(2, 2) ≥ · · · ≥ Σx(nm, nm) > 0, (14)

Σ−1
n (1, 1) ≥ Σ−1

n (2, 2) ≥ · · · ≥ Σ−1
n (pm, pm) > 0 , (15)

Throughout, B(i, j) will denote the element on the i-th row and j-th
column of matrix B. In order to rewrite the optimization problem
(10)-(11) in a more convenient form, we now assume that

G = UnFU
H
x . (16)

Observe that this introduces no restrictions on G: If F can be any
pm × nm matrix, then so can G, because both Un and Ux are
unitary. Exploiting (16), (13) and (7), it is straightforward to verify
that the optimization simplifies to

min
F

Tr
((

Σ−1
x + F

HΣ−1
n F

)
−1
)

(17)

s.t. Tr
(

F
H
F
)

≤ γ. (18)

Applying [1, Lemma 1], it can be shown that the optimal F is di-
agonal1. If we define the compact notation FH(i, i)F(i, i) = f2

i ,
Σ−1

x (i, i) = σ−1
x (i) and Σ−1

n (i, i) = σ−1
n (i) the optimization prob-

lem can therefore be written as

min
F

nm∑

i=1

1

σ−1
x (i) + f2

i σ
−1
n (i)

(19)

s.t.
nm∑

i=1

f
2
i ≤ γ. (20)

This is clearly a convex problem in f2
i , for which we know the KKT

conditions define the optimal solution. The solution can be derived
as

f
2
i =

(

0,

√

σn(i)

α
−

σn(i)

σx(i)

)+

, (21)

1In fact, it can also be shown that the optimal F is such that FH
Σ

−1
n F

has decreasingly ordered diagonal elements. We do not have to rely on that
property at this point, because it follows naturally.

5062



where (0, q)+ denotes the maximum of 0 and q, and α > 0 is a
Lagrange multiplier chosen such that

γ =

nm∑

i=1

(

0,

√

σn(i)

α
−

σn(i)

σx(i)

)+

. (22)

Observe that both the objective function and the constraint de-
pend on F only via the squared elements f2

i = FH(i, i)F(i, i). This
implies that the optimal solution for F is not unique: any F satisfy-
ing (21) and (22) is optimal, and we may for instance choose F to
be purely real. Inserting such an F into (16), produces an optimal G
matrix.

Note finally that the solution (21) satisfies the constraint (20)
with equality. The explanation for this is straightforward: The ob-
jective function Tr

(
W−1

)
, as in (17), is strictly convex in the eigen-

values of any positive definite matrix W. Hence, for a matrix F that
does not fulfill (18) with equality, we can always reduce (17) by
updating F to ηF, where η > 1 without violating the constraint.
The implication is that we need not consider the interior of the con-
straint region, only its boundary. An entirely similar argument goes
of course for the original problem (7), and therefore we can conclude
that a solution should satisfy (8) with equality.

4. PROJECTING ONTO THE FEASIBLE SET

We cannot expect that an optimal matrix G, as given in the previous
section, factorizes as required by (12). Moreover, we are actually
interested in the underlying S. To that end, and since we know that
a solution will spend all the available power, a natural approach is to
select the S which solves

min
S

∥
∥
∥G−

(

S
T ⊗ Im

)∥
∥
∥

2

2

(23)

s.t. Tr
(

S
H
S
)

= σ. (24)

From the definition of the Kronecker product we then have

S
T ⊗ Im =






S(1, 1)Im · · · S(n, 1)Im
...

. . .
...

S(1, p)Im · · · S(n, p)Im




 .

If we partition G into a similar block structure, such that

G =






G1,1 · · · Gn,1

...
. . .

...
G1,p · · · Gn,p




 ,

where each block Gi,j is m×m, it can be verified that

∥
∥
∥G−

(

S
T ⊗ Im

)∥
∥
∥

2

2

=

n∑

i=1

p∑

j=1

‖Gi,j − S(i, j)Im‖2
2
. (25)

As for the constraint, note that

Tr
(

S
H
S
〉

=

n∑

i=1

p∑

j=1

S(i, j)S∗(i, j) = σ, (26)

where (·)∗ denotes complex conjugation. The projection is therefore
the solution to

min
S

n∑

i=1

p∑

j=1

‖Gi,j − S(i, j)Im‖2
2

s.t.
n∑

i=1

p∑

j=1

S(i, j)S∗(i, j) = σ.

This is a convex problem with convex constraints. The solution can
be derived as

S(i, j) =
Tr (Gi,j)

m+ β
, (27)

where β is a Lagrange multiplier chosen such that

n∑

i=1

p∑

j=1

Tr (Gi,j)
∗ Tr (Gi,j)

(m+ β)2
= σ. (28)

Observe that if β = 0 satisfies (28), we see from (27) that S(i, j)
becomes the mean of the diagonal elements of block Gi,j .

5. UPDATING TO A LOCAL MINIMUM

The result of the projection of (27)-(28) produces a feasible pilot
matrix, but that pilot matrix is in general not even a first order op-
timal solution to the original problem (7)-(8). Therefore it should
be treated as a starting point for subsequent optimization. We will
move from this starting point towards a local optimum using an aug-
mented Lagrangian method. The latter is also known as the method
of multipliers. The core idea is to replace a constrained problem by
a sequence of unconstrained problems. A good introduction to this
method, along with algorithms for implementation, can be found in
[7]. Therefore we do not present the full details of the method here,
but rather focus on some key ingredients.

Let the objective function in (7) be denoted by g(S). Because we
know that a solution will spend all the available power, we substitute
the inequality contraint (8) by the equality constraint c(S) = σ −
Tr
(
SHS

)
= 0. The augmented Lagrangian function is then given

by

L (S, λ, µ) = g(S)− λc(S) +
1

2µ
c
2(S), (29)

where λ is a Lagrange multiplier and µ is a penalty parameter. The
derivative of this function with respect to S is

∇sL (S, λ, µ) = ∇sg(S)−

(

λ−
c(S)

µ

)

∇sc(S). (30)

Because ∇sg(S) and ∇sc(S) are key elements in the augmented
Lagrangian method, we derive them next.

5.1. The gradient of the objective and the constraint

The objective function can be expressed as Tr
(
W−1

)
, where

W = C
−1
xx +

(

S
T ⊗ Im

)H

C
−1
nn

(

S
T ⊗ Im

)

. (31)

In order to find the derivative of the objective function w.r.t. S, it
is convenient to take the approach suggested in [4]. That is, to first
identify the differential, and then use this to obtain the derivative.
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S Srand Skron

Winner rate 0.5080 0.3160 0.1760
Average normalized MMSE 0.0657 0.0674 0.0748

Table 1. Performance for a specific class of covariance matrices.

Without displaying the preceding steps here, the gradient of the ob-
jective function w.r.t. S, expressed as a 1× np row vector is:

−vecT (S∗ ⊗ Im)
(
C

−1
nn ⊗W

−1
W

−1
)
(Ip ⊗R) , (32)

where

R = (Km,n ⊗ Im) (In ⊗ vec (Im)) , (33)

and Km,n is the commutation matrix [4, Definition 2.9]. In order to
obtain ∇sg(S), we split the row vector (32) into p equally long sub
vectors and take these as the columns of ∇sg(S). The derivative of
the constraint w.r.t. S is simply

∇cs(S) = S
∗

. (34)

For space reasons, we do not present the full algorithmic frame-
work of the augmented Lagrangian method here. Instead we refer
the reader to [7, Framework 17.3]. With the gradients given in (32)
and (34), the algorithm is straightforward to implement.

6. NUMERICAL RESULTS

This section compares experimentally the performance of our method
with that of [1, Heuristic 1], for a particular class of noise and chan-
nel covariance matrices, which we describe shortly. The augmented
Lagrangian method is implemented as described in [7, Framework
17.3], using the following parameters:

µk = τk =
1

k
.

As initial values, we select λ0 = µ0 = τ0 = 1. We assume a case
where all matrices in (2) are 2 × 2. Consequently, Cxx and Cnn

are 4 × 4. We study the average MMSE over 500 different scenar-
ios where Cxx and Cnn are generated randomly. For each scenario,
the covariance matrices are generated as follows. Let A be a real-
ization of a 4 × 4 matrix with i.i.d. elements N (0, 1). Compute
Cxx = abs(AT )abs(A), where the abs(·) operator turns the sign of
the negative elements. Cnn is generated independently in the same
manner. Observe that these matrices are symmetric, and positive
definite with probability one. We assume that σ = 4 in (8). Table
1 summarizes the results. In Table 1, S, Skron and Srand denote
the pilot matrices that result from our method, from [1, Heuristic
1], and from an augmented Lagrangian method with random start-
ing point, respectively. The ’winner rate’ represents the share of
scenarios where a method outperforms the two other methods. The
normalized MMSE is defined as

Tr
((

C−1
xx +

(
ST ⊗ Im

)H
C−1

nn

(
ST ⊗ Im

))−1
)

Tr (Cxx)
.

This is just the standard MMSE normalized with the power of the
channel that we wish to estimate.

Table 1 indicates that, for covariance matrices generated as de-
scribed, the proposed method is better than that of [1, Heuristic 1]
on average. In fact, for this setup, an augmented Lagrangian method

with random starting point is also better than [1, Heuristic 1] on av-
erage. These observations underline that pilot matrices based on the
Kronecker structure assumption should be used with some care, and
that other alternatives could be worth exploring. Also, Table 1 in-
dicates that our method is better than using a random starting point
on average. This examples focuses on the average performance over
multiple scenarios. In a single scenario, with stationary settings, one
can evaluate several alternatives and select the best one. We have
observed, in such cases, that the difference between the different
methods may be substantial.

The Kronecker structure assumption allows for a closed form
solution. It may not always turn out to be the best, but it can be
derived with very limited complexity. In, contrast the augmented
Lagrangian method is based on an iterative algorithm. The speed of
convergence depends on the initial values and how one updates the
parameters, but it will invariably introduce much higher computa-
tional load. Under stationary or slowly varying statistics, that effort
may still pay off.

7. CONCLUSION

We have described a procedure which obtains a pilot matrix for
MIMO channel estimation when the structure on the underlying co-
variance matrices is arbitrary. In particular, we do not rely on Kro-
necker structure. The procedure is based on a convex relaxation of
the original problem. Its solution is projected onto the feasible set,
and used as starting point for an augmented Lagrangian method. Nu-
merical experiments indicate that this procedure may produce pilot
signals that are better than those obtained under the Kronecker struc-
ture assumption.

8. REFERENCES

[1] E. Björnson and B. Ottersten, “A Framework for Training-
Based Estimation in Arbitrarily Correlated Rician MIMO Chan-
nels With Rician Disturbance,” Signal Processing, IEEE Trans-
actions on, vol. 58, no. 3, pp. 1807 –1820, march 2010.

[2] D. Katselis, E. Kofidis, and S. Theodoridis, “On Training Op-
timization for Estimation of Correlated MIMO Channels in the
Presence of Multiuser Interference,” Signal Processing, IEEE
Transactions on, vol. 56, no. 10, pp. 4892 –4904, oct. 2008.

[3] M. Biguesh and A.B. Gershman, “Training-based MIMO Chan-
nel Estimation: a Study of Estimator Tradeoffs and Optimal
Training Signals,” Signal Processing, IEEE Transactions on,
vol. 54, no. 3, pp. 884 – 893, march 2006.

[4] A. Hjørungnes, Complex-Valued Matrix Derivatives : with Ap-
plications in Signal Processing and Communications, Cam-
bridge University Press, Cambridge, 2011.

[5] W. Weichselberger, M. Herdin, H. Ozcelik, and E. Bonek, “A
Stochastic MIMO Channel Model with Joint Correlation of Both
Link Ends,” Wireless Communications, IEEE Transactions on,
vol. 5, no. 1, pp. 90 – 100, jan. 2006.

[6] C. Oestges, “Validity of the Kronecker Model for MIMO Cor-
related Channels,” in Vehicular Technology Conference, 2006.
VTC 2006-Spring. IEEE 63rd, may 2006, vol. 6, pp. 2818 –
2822.

[7] Jorge Nocedal and Stephen J. Wright, Numerical Optimization,
Springer series in operations research and financial engineering.
Springer, New York, NY, 2. ed. edition, 2006.

5064


