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ABSTRACT

The statistics of the fading channel are changing due to the temporal
and spatial inhomogeneity. To characterize the temporal variation
of the channel, short-term statistics need to be estimated. Instead
of estimating the statistics over a fixed short period, we applied the
Bayesian change point detection (CPD) on the Nakagami-m channel
model to capture the abrupt changes in time. The detected change
points partition the channel into segments that are characterized by
different parameters. We also derive the MAP estimators for the
model parameters of each segment based on the hyperparameters
generated by CPD. Test results on the channel measurement show
the effectiveness of the CPD and the proposed estimators.

Index Terms— Fading channel, Change point detection, param-
eter estimation, Nakagami-m distribution

1. INTRODUCTION

Wireless channel is generally nonstationary in time, especially when
the transmitters/receivers are in motion, or there are moving objects
near the fixed wireless link which changes the phases of the arriving
multipath signals. Therefore, the statistics or even the distribution
model are changing due to the temporal and spatial inhomogene-
ity [1]. Studying the insight of temporal variations of the channel
envelope becomes more important for wireless local area networks
(WLANs) and modern mobile communications, as their transmis-
sion power is designed to be relatively low.

Several research groups have done the modeling and the analy-
sis on the temporal variations of indoor and mobile channels causing
by various conditions. In [2], it is shown that for indoor channel
people moving around transmit/receive antennas causes significant
temporal variation in the signal level. The human shadowing ef-
fect has been studied for a fixed wireless link under WLAN [3] and
ultra-wide band (UWB) [4] indoor channels. It is shown that people
moving in between the transmission path significantly changes the
Rician K-factor, received power, and RMS delay spreads. In [5, 6],
the authors discussed the effects of nearby traffic on the variations of
Rician K-factor of outdoor urban channels. It is reported that heavy
traffic causes richer scattering and thus lower K-factor. Temporal
fading has also been studied for the industrial indoor environment
with lots of machinery movement [7]. In [8], the first-order statisti-
cal model of the Rician K-factor was proposed, and the variations
of K with time, frequency and location were also considered. In
these analyses, the parameters of the probability models were esti-
mated over a short period of observations, varying from a minute to
15 minutes. In other words, the channel samples of that fixed period
were assumed to be stationary and share the same statistics.

However, the changes in the environment, such as people move-
ment or street traffic are usually unpredictable, and the channel mea-
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surement within an interval of a few minutes could contain more than
one statistical states. Estimating parameters from the whole interval
may lose some insights of the true temporal variations. Hence, to
precisely study the temporal variation of the channel statistics, there
should be a mechanism that detects those changes. We propose us-
ing a Bayesian change point detection (CPD), which is based on
the work of [9], to detect the changes in a sequence of the narrow-
band channel envelope samples. CPD detects sudden changes in the
generative parameters of a time series. These change points natu-
rally partition the observation into segments that are characterized
by different parameters. Maximum a posteriori (MAP) parameter
estimators are also derived based on the posterior probability gener-
ated during the CPD calculation. Hence, the channel parameters are
obtained once the change points are detected.

Specifically, we focus on the Nakagami-m channel model [10].
Nakagami-m is a very flexible model covering wide range of fad-
ing scenarios through the parameter m. It is equivalent to several
known distributions, such as Rayleigh and half-Gaussian, and is a
very good approximation of Rice distribution [11]. Hence, by ap-
plying the CPD to the Nakagami-m model, we are able to capture
the variations of statistics and also the transitions between different
transmission scenarios, such as line-of-sight (LOS) and non-line-of-
sight (NLOS) transmission.

2. BAYESIAN CHANGE POINT DETECTION AND
EXPONENTIAL FAMILY

2.1. Bayesian Change Point Detection

The change point detection technique used here is based on the work
in [9]. A brief introduction of this algorithm will be given in this
section. Denote h1:t as the data sequence, h1, h2, · · · , ht, observed
from time 1 to t. Assume all the data are independently sampled
from the same class of probability distribution, but the underlying
parameter set θ is changing over time. Consequently, the data se-
quence is divided into non-overlapped segments, and the data within
each segment are independently sampled from the distribution of the
same parameter set. A change point occurs when the parameter set
changes, which is at the beginning of each segment. Define the run
length rt as the time length since the last change point observed at
time t, so rt = 0 indicates a change point at time t. The objective is
to estimate the run length by

r̂t = max
rt=0,1,··· ,t

P (rt|h1:t). (1)

The posterior probability in (1) is obtained by computing the joint
probability P (rt ∩ h1:t) recursively [9];

P (rt ∩ h1:t)

=
∑
rt−1

P (rt|rt−1)P (ht|hrt−1)P (rt−1 ∩ h1:t−1), (2)
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where hrt−1 denotes the data set associated with the run length rt−1.
Namely, the second term in (2) indicates that the current data ht only
depends on the past observations in the same run.

The modeling of the probability P (rt|rt−1) in (2) will be dis-
cussed in Section 3. The predictive probability P (ht|hrt−1) in (2)
is associated with the data probability model through

P (ht|hrt−1) =

∫
P (ht|θ)P (θ|hrt−1)dθ, (3)

where P (ht|θ) is the postulated data model with parameter set θ and
is always the same class of distribution as previously mentioned. In
Bayesian approach, the parameter set θ is assumed to be random so
P (θ|hrt−1) can be viewed as the prior distribution of θ at time t.
On the other hand, the posterior probability P (θ|hrt) obtained by
normalizing the integrand in (3) will be served as the prior at time
t + 1. If there exists a prior that is conjugate to the data model, the
resulting posterior probability is still in the same class of distribution
as the prior. Consequently, the integrand in (3) will always be in
a fixed form if the conjugate prior is applied, greatly reducing the
computational complexity of evaluating (3).

2.2. Exponential Family and Conjugate Prior

It is known the distribution models in the exponential family must
have conjugate priors [12]. Fortunately, the common models of
the fading channel envelope, such as Rayleigh, Nakagami-m, and
Weibull distribution, are exponential families. The distribution of a
random variable X with parameter set θ belongs to an exponential
family if the probability density function (pdf) can be written as

P (x|θ) = b(x)g(θ) exp
(
φ(θ)Tu(x)

)
, (4)

where b(x) and g(θ) are known functions, and φ(θ) and u(x) are
vectors of the same dimension as that of θ. The prior of θ conjugate
to (4) has to be proportional to [12]

P (θ) ∝ g(θ)γ exp
(
φ(θ)Tν

)
, (5)

with the hyperparameter set η = {γ,ν}. In the following sections
we will use (5) to find the conjugate prior of the distributions of in-
terest. Additionally, it can be easily proved that θ depends on x
only through the hyperparameter set η. Hence, η is the sufficient
statistic for θ, and P (θ|x) = P (θ|η). As observing more data, we
should update the posterior probability through updating the suffi-
cient statistic.

3. CPD AND PARAMETER ESTIMATION FOR
NAKAGAMI-M FADING CHANNEL

In this section, we will discuss how to apply the change point detec-
tion theory introduced in Section 2 on Nakagami-m fading channel
model. The pdf of an Nakagami-m random variable h is written as

f(h|m,Ω) =
2

Γ(m)

(m
Ω

)m
h(2m−1)e−

mh2

Ω , h ≥ 0, (6)

where Ω is the expected second moment of ht. The parameter m
(m ≥ 1/2) indicates the level of fading. For m = 1, (6) is equiva-
lent to a Rayleigh pdf. For m > 1, (6) is a good approximation of a
Rice pdf where m is proportional to the Rician K-factor.

To apply the Nakagami-m chanel model to the Bayesian change
point detection algorithm, the conjugate prior needs to be found.

First, we replace the parameter 1/Ω with γ for the convenience of
the future derivations. Follow (4), the Nakagami-m pdf consists of

b(ht) = 2, g(m, γ) =
1

Γ(m)
(mγ)m , (7)

φ(m, γ) = [−mγ 2m− 1]T , u(ht) =
[
h2
t lnht

]T
. (8)

Consequently, using (5) the conjugate prior is in the form of

P (m, γ|n, ν, s, p) ∝ 1

Γn(m)
(mγ)νm p2m−1 exp {−msγ} , (9)

with hyperparameter set η = {n, ν, s, p}. There is no known distri-
bution in the exponential family with pdf in the form of (9). How-
ever, it is not difficult to find the normalization constant of (9) by
numerical integration. Let K be the normalization constant, which
is a function of η. Namely,

K(η) =

∫
m

∫
γ

1

Γn(m)
(mγ)νm p2m−1 exp {−msγ} dγdm.

(10)
It is observed that the conditional pdf f(γ|m) can be written into a
gamma distribution, so K(η) can be simplified to∫

m

∫
γ

(ms)νm+1

Γ(νm+ 1)
γ(νm+1)−1e−msγ︸ ︷︷ ︸
f(γ|m)

dγ
Γ(νm+ 1)

msνm+1

p2m−1

Γn(m)
dm

=

∞∫
1/2

Γ(νm+ 1)

Γn(m)

p2m−1

msνm+1
dm. (11)

To find K, we applied the Laplace’s method [13], in which the
integrand is approximated by a Gaussian pdf. Suppose we would
like to find

∫
x
f(x)dx for some given function f(x). Let q(x) =

ln f(x) and x∗ = maxx q(x). The idea of the Laplace’s method is
to approximate f(x) by exp{q̂(x)}, where q̂(x) is the second-order
Taylor’s approximation of q(x) around x∗. Hence, the integral of
interest is approximated by

∫
x

exp {q̂(x)} dx, which yields

f(x∗)
√

2π/|q′′(x∗)|
∫
x

N
(
x;x∗, 1/|q′′(x∗)|

)
dx. (12)

The integrand in (12) is a Gaussian pdf with the mean x∗ and the
variance 1

|q′′(x∗)| . The integral of a Gaussian pdf can be expressed

by the Q-function, which is defined asQ(x) =
∫∞
x

1/
√

2πe−t
2/2dt

and can be easily approached by numerical approximation. Hence,
to apply the Laplace’s method, one only needs to find q′′(x) and x∗.

Using Laplace’s method to find K in (11), first we define q(m)
as the logarithm of the integrand in (11). The second derivative of
q(m) is

q′′(m) = ν2ψ(1)(νm+ 1)− nψ(1)(m) +m−2, (13)

where ψ(k)(m) is the polygamma function defined as the (k + 1)th

derivative of the logarithm of the gamma function. From (12) and
(13), K(η) can be approximated by

Γ(νm∗ + 1)

Γn(m∗)

p2m
∗−1

msνm∗+1

√
2π

|q′′(m∗)|Q

(
1
2
−m∗√

1/|q′′(m∗)|

)
. (14)

Therefore, m∗, them that maximizes q(m), is the only thing left we
need to solve. To find m∗, we set q′(m) to zero; namely

q′(m∗) = νψ(0)(νm∗+1)−nψ(0)(m∗)− 1

m∗
+ln

p2

sν
= 0. (15)
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Fig. 1. An example of using Laplace’s approximation for the inte-
grand in (11). m(k) denotes the result of kth iteration of Newton’s
method for searching m∗ and m(0) is the initial value.

From [14], it is shown that ψ(0)(m) can be approximated by

ψ(0)(m) = ln(m)− 1

2m
− 1

12m2
+

1

120m4
− 1

252m6
+O

(
1

m8

)
.

(16)
By only taking the first term in the series above and ignoring 1/m∗

in (15), we can find a crude estimate of m∗ ≈
(

s

νp2/ν

) ν
ν−n . Take

this estimate as a initial point and perform Newton’s method, we can
find a more accurate m∗. In Fig. 1, an example of using Laplace’s
approximation for the original integrand exp{q(m)} is shown. In
this example, the parameters of q(m) are set to n = 10, ν = 7, s =
5, and p = 3. The original integrand exp{q(m)} is fairly close to
a Gaussian bell shape, so exp{q̂(m)} leads a good approximation.
The results of the Newton’s method for searchingm∗ are also shown
in the figure,where m(k) is the result of kth iteration and m(0) is the
initial value. In this example, the Newton’s method converges in
only two iterations since the initial estimate is close to the true m∗.

With K(η) and the conjugate prior form in (9), we are able to
derive the predictive probability using (3), which yields

P (ht|hrt−1) =
2K(ηrt)

K(ηrt−1)
, (17)

where ηrt is the hyperparameter set updated by the observations
hrt . Also, since the posterior probability resulting from the inte-
grand in (3) is still in the same distribution form as the conjugate
prior, by comparing the hyperparameter sets in the posterior and in
the prior, we can easily obtain the updating equations for the hyper-
parameter set ηrt ,

nrt = nrt−1 + 1, νrt = νrt−1 + 1,

prt = prt−1 · ht, srt = srt−1 + h2
t . (18)

Hence, when observing a new sample ht, we first update the hyper-
parameters using (18) and then plug the updated hyperparameter set
into (17) to obtain the new predictive probability.

Besides the predictive probability, the run length transition prob-
ability P (rt|rt−1) needs to be defined in order to use (2). Given
rt−1, rt could only be 0 or rt−1 + 1. Hence, the run length tran-
sition probability is fully defined by P (rt = 0|rt−1). Since the
change points of the fading channel occurs randomly, we simply take
P (rt = 0|rt−1) = 1/λ which indicates that a change point occurs
at time t does not depend on the previous run length. The constant
λ is the expected length of each segment, which should be tuned for
different transmission environments. This is also equivalent of as-
suming the length of each segment follows a geometric distribution
with mean λ.

3.1. MAP parameter estimators

We estimate the parameters of the Nakagami-m pdf based on the
observations in the current segment hrt by MAP criterion. Since
the conjugate prior is used, the posterior probability P (m, γ|hrt) is
also in the same form as in (9),

P (m, γ|hrt) =
(mγ)ν

rtm (prt)2m−1

K(ηrt)Γn
rt (m)

exp {−srtmγ} . (19)

First we take the partial derivative of the logarithm of P (m, γ|hrt)
with respect to γ and set to 0, and the MAP estimator of γ corre-
sponding to the estimated run length r̂t can be easily solved,

γMAP
t =

ν r̂t

sr̂t
. (20)

Note that the MAP estimator of Ω is not 1/γMAP
t since the MAP

estimator does not commute over nonlinear transformations [15].
On the other hand, by setting ∂ lnP (m, γ|hrt)/∂m = 0 and

plugging in the MAP estimator of γ, we obtain

lnm− nrt

νrt
ψ(0)(m) = ln

srt

νrt (prt)2/ν
rt
. (21)

Apply the approximation in (16) and preserve the first three terms of
the series, the equation (21) becomes(

1− nrt

νrt

)
lnm+

1

2m
+

1

12m2
= ln

srt

νrt (prt)2/ν
rt
. (22)

mMAP
t can be solved from (22) by numerical methods. A faster but

less accurate way to approach mMAP
t is by observing from (18) that

limrt→∞
nrt

vrt
= 1 when the initial values of n and ν are fairly close,

so that (22) can be simplified to a quadratic equation. Consequently,
the MAP estimator corresponding to r̂t is a root of the quadratic
equation, which has a closed-form expression

mMAP
t =

6 +
√

36 + 48C r̂t

24C r̂t
, (23)

where C r̂t = ln sr̂t/ν r̂t
(
pr̂t
)2/νr̂t

. Note that the other root is in-
valid since it is negative. The estimator in (23) is accurate as we
collect more data from the same segment such that n

rt

vrt
is close to 1.

Also, it is known from the estimation theory that the MAP estima-
tor converges to maximum likelihood (ML) estimator as the number
of observations grows large [15]. Our MAP result in (23) indeed
converges to the ML estimator derived in [16].

4. EVALUATION

To validate the CPD methods and parameter estimators for the
Nakagami-m distribution, we first test with the Nakagami-m pseudo
random sequence generated by Matlab. The sequence is man-
ually partitioned into 4 non-overlapped segments. The samples
within each segment are independent and identically distributed.
The parameters for each segment are are m = {1, 2, 4, 3} and
γ = {1, 1.42, 0.83, 1.33}. As previously discussed, the generated
random sequence simulates the scenario when the transmission is
turning from NLOS (m = 1) to LOS (m > 1).

Fig. 2 shows the CPD and parameter estimation results. The true
change points are at t = {251, 551, 751} and the estimated change
point are at t = {262, 551, 751}. The first detected change point
is slightly behind the true one because the first few samples of the
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Fig. 2. Results of the CPD on a Nakagami-m random sequence with
4 segments. The sequential MAP estimators of m and γ are shown
in the second and third subplots, respectively.
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Fig. 3. (a) CPD results on the channel measurement of the first sce-
nario. (b) Comparison between the empirical CDFs of the first two
detected segments and the corresponding Nakagami-m CDFs using
the estimated parameters.

second segment have closer statistics to the one of the first segment.
For comparison, we also show the sequential ML estimator in the
same figure. Note that this sequential ML estimator is computed
based on the full knowledge of the change point locations and thus
can be viewed as one of the best statistical estimators if the change
point locations are provided. The ML estimators for m and γ were
derived in [16]. For bothm and γ, our MAP estimators depending on
the detected change point locations perform very closely to the ML
estimator, especially after observing more data in the same segment.

Next, we test the proposed method on the channel measurement.
The experiment was conducted in a lab room, which is surrounded
by wooden walls and glasses windows. Both transmitter and re-
ceiver are the radio module SC2000 by Silvus Technologies. The
carrier frequency is 2.49 GHz. In practice, the channel samples are
time correlated, which violates the independence assumption in the
CPD and the parameter estimator. As pointed out in [2, 5, 6], as
the channel sampling interval increases, the temporal correlation be-
tween samples drops rapidly and can be viewed as “approximately
independent”. In each experiment, the channel was measured for 8
minutes with 0.48 second sampling interval which is long enough for
independent assumption. The transmitter and the receiver were fixed
and separated by 3.2 meters at all time during the measurement. The
time average power of the channel envelope in each experiment was
normalized to 1.

In the first scenario, there was a no object in between the trans-
mission path. Four prearranged people were walking nearby the re-
ceiver. As reported in [2], people moving around the receiver would
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Fig. 4. (a) CPD results on the channel measurement of the second
scenario. (b) Comparison between the empirical CDFs of the two
detected segments and the corresponding Nakagami-m CDFs using
the estimated parameters.

cause larger variation in the Rician K-factor than people moving
around the transmitter. The results of applying Nakagami-m CPD
on the measurement are shown in Fig. 3(a). There are 4 detected
segments and 3 change points at t = {300.96, 445.92, 461.28} sec-
onds respectively. For each segment, we take the MAP estimation
of m and γ from the last time instant of the estimated segment. The
number of sample points in the last two estimated segments are rel-
atively small, so we only consider the goodness-of-fit for the first
two segments. The MAP estimated {m, γ} are {19.9613, 0.8864}
and {17.7114, 1.2319} for the two segments, respectively. Using
those estimated parameters, the two estimated Nakagami-m cumu-
lative distribution functions (CDF) (denoted as Nakagami-m 1 and
2) and the corresponding empirical CDF (denoted as ECDF 1 and 2)
of the two segments are plotted in Fig. 3(b). It is clear that the dis-
tributions of the two segments are significantly different. Using the
Komolgorov-Smirnov goodness-of-fit test (KS test) [17], both cases
pass the test under the significance level 1%. Also, from the esti-
mated m values, the equivalent Rician K-factor are over 30 for both
cases, which matches the experiment setting since there was a clear
LOS between antennas.

In the second scenario, people were consistently walking or
standing still in between the transmitter and the receiver. There-
fore, there was no direct sight between antennas at most of the
time. The results of the CPD are shown in Fig. 4(a). One change
point is detected at 364.8 second. The MAP estimated {m, γ}
are {1.0021, 0.8821} and {1.1377, 1.7724} for the two segments,
respectively. The comparison between the empirical CDFs of the
segments and their corresponding Nakagami-m CDFs is shown in
Fig. 4(b). Both cases pass the KS test with a significance level 1%.
The estimated m of both segment are very close to 1 which implies
there is a strong multipath fading effect and the envelope distribution
is also close to a Rayleigh.

5. CONCLUSION

We proposed a precise way to characterize the abrupt temporal vari-
ations in the wireless fading channel. Applying Nakagami-m CPD
can provide us the variations of the fading condition and the power
of the channel envelope. The MAP parameter estimation can be ob-
tained directly from the hyperparameter sets of the conjugate prior.
CPD combining with parameter estimation can give us a more ac-
curate view of modeling the empirical channel data. This is useful
especially for the indoor measurement as in our experiment, since
the channel envelope usually suffers from human shadowing and has
larger temporal variations.
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