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ABSTRACT
Multi-user multi-input-multi-output (MU-MIMO) systems usually
require users to feedback the channel state information (CSI) for
scheduling. Most of the existing literature on the reduced feed-
back user scheduling focused on the throughput performance and the
queueing delay was usually ignored. As the delay is important for
real-time applications, it is desirable to have a low feedback queue-
aware user scheduling algorithm for MU-MIMO systems. This pa-
per proposes a two timescale queue-aware user scheduling algo-
rithm, which consists of a queue-aware mobile-driven feedback fil-
tering stage and a SINR-based user scheduling stage. The feedback
policy is obtained by solving a queue-weighted optimization prob-
lem. In addition, we evaluate the associated queueing delay perfor-
mance by using the large deviation analysis. The large deviation
decay rate for the proposed algorithm is shown to be much larger
than the CSI-only scheduling algorithm. Numerical results demon-
strate the large performance gain of the proposed algorithm over the
CSI-only algorithm, while the proposed one requires only a small
amount of feedback.

Index Terms— MU-MIMO, Limited Feedback, Queue-aware,
Large Deviation, Random Beamforming

1. INTRODUCTION

Multi-user MIMO (MU-MIMO) systems transmit multiple streams
of data to a group of users simultaneously by exploiting the spa-
tial degrees of freedom among users. In a cellular network, where
the BS equips with M antennas and serves K users, a sum rate of
M log logK can be achieved at the expense of requiring full chan-
nel state information (CSI) at the BS [1, 2]. To reduce the CSI
feedback overhead, a threshold based feedback control has been pro-
posed in [3–5], where a sum rate capacity O(M log logK) can be
achieved requiring only a portion of users feeding back to the BS [3].

While a high throughput is desired in MU-MIMO systems, the
delay performance is also crucial for real-time applications. A good
user scheduling policy should strike a balance between the through-
put and delay. As the CSI indicates good opportunity to transmit
whereas the Queue State Information (QSI) indicates the urgency of
the data flow, the delay-aware system should incorporate both the
CSI and QSI in the user scheduling. Yet, it is challenging to de-
sign such a delay-aware MU-MIMO system, as it involves solving
queue-dependent stochastic optimization problems. Moreover, the
delay analysis of the queue state-dependent buffer dynamics is very
difficult.

In this paper, we consider a MU-MIMO downlink system with
a M -antenna BS and K multi-antenna mobile users. There are K
bursty data flows to each of the K mobiles from the BS. The BS

applies random beamforming for MU-MIMO. We propose a two
timescale delay-aware user scheduling policy, which consists of a
mobile-driven feedback filtering stage (QSI timescale) and a user
scheduling stage at the BS (CSI timescale). As a result, urgent users
are given higher priority to feedback in order to reduce the total feed-
back overhead. We show that our design can achieve throughput
optimality over all the two timescale policies and it only has loga-
rithmic complexity over the number of users K. In addition, using
the large deviation theory [6], we derive the asymptotic exponen-
tial decay rate for the tail probability of the worst case queue in
the system. Specifically, we show that the asymptotic decay rate
� 1

B

log(P{max

k

Q
k

} > B) scales as O(logK) for the proposed
delay-aware user scheduling algorithm, which is substantially better
than traditional CSI-only MU-MIMO user scheduling scheme.

2. RELATION TO PRIOR WORK

Reduced feedback user scheduling for MU-MIMO systems has been
studied in [1–5], where the authors only focused on the throughput
performance. In the preliminary works for queue-aware designs, the
authors in [7] proposed a maximum queue-weighted sum rate pol-
icy with a heuristic greedy-based algorithm, but global CSI from all
the users is required. On the other hand, the work [8] studied the
degradation of the queue stability region for SDMA due to limited
feedback. Yet, stability is only a weak form of delay performance.
In this work, we propose a novel queue-aware two timescale algo-
rithm to reduce both the feedback overhead and the queueing delay
in the system. In addition, we derive the associated asymptotic queue
overflow probability for delay performance evaluation.

3. SYSTEM MODEL

3.1. MU-MIMO System, Bursty Data Source and Queue Model

We consider a downlink MU-MIMO system with a M -antenna BS
and K geometrically dispersed mobile users (K � M ). Each mo-
bile user has N receive antennas. The BS transmits M data streams
to a group of selected users at each time slot, and random beam-
forming is used. Let s(t) = (s

1

(t), . . . , s
M

(t))T be the vector of
the transmit symbols for the M data streams, where E [s

m

s⇤
m

] = 1.
The receive signal y

k

2 CN⇥1 at the k-th user is

y
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�
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s
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8k 2 A(t)

where {�
1

, . . . ,�
M

} are M (random) orthonormal beamforming
vectors, H

k

2 CN⇥M is the zero mean, unit-variance circularly
symmetric complex Gaussian channel matrix from the transmitter to
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the user k, n
k

2 CN⇥1 ⇠ CN (0, I
N

) is the Gaussian additive noise
vector, P is the transmit power at the BS, and A(t) denotes the set
of the scheduled users at time slot t. The effective SINR of the i-th
beam on the n-th receive antenna of the k-th user can be calculated
as follows,

SINRi

k,n

=

���H(n)

k

�
i

���
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P
j,j 6=i

���H(n)

k

�
j

���
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+ 1/P
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where H
(n)

k

denotes the n-th row of the channel matrix H
k

of user
k. By selecting the users with the highest SINR on each beam,
the transmitter can support near-orthogonal transmission and exploit
multi-user diversity without the global CSI {H

k

} [9].
We assume the channel matrices {H

k

} to be in quasi-static
block fading, where each channel realization H

k

remains constant
during each time slot, but identically and independently distributed
(i.i.d.) across different time slots. The mobile users are assumed to
have perfect knowledge of their local CSI H

k

.
Data arrives in packets randomly for different users. Let A

k

(t)
denote the number of packets that arrive at the BS for user k dur-
ing time slot t, and A(t) = (A

1

(t), . . . , A
k

(t)). We assume that
the packet arrival A

k

(t) are i.i.d. with respect to (w.r.t.) t and in-
dependent w.r.t. k according to a general distribution with mean
E[A

k

(t)] = �
k

. The packet has a fixed length of L bits.
Let D

k

(Q(t),H(t)) represents the amount of departure for
user k at time slot t, where Q(t) = (Q

1

(t), . . . , Q
K

(t)) is
the vector of queueing backlogs for all the users and H(t) =

(H
1

(t), . . . , H
K

(t)). The queueing dynamics for user k is given
by Q

k

(t + 1) = [Q
k

(t)�D
k

(Q(t),H(t))]+ + A
k

(t), where the
operator [⇧]+ represents [w]

+

= max{0, w}. According to Little’s
Law [10], there is no loss of generality to study the queue length
Q

k

for the purpose of understanding the delay. The goal of the user
scheduling controller is to adjust the channel access opportunity for
all the users so that their queue lengths (or delay) are minimized
while a reasonable system throughput is maintained.

3.2. Two Timescale User Scheduling with Reduced Feedback

Conventional throughput optimal (in stability sense) user scheduling
policies such as max-weighted-queue (MWQ) algorithms [11] re-
quire global CSI and QSI knowledge. However, the CSI is available
at the mobile user side while the QSI is available at the BS. Fur-
thermore, the MWQ policy requires solving a queue weighted sum
rate combinatorial optimization problem that results in high com-
plexity. To overcome these challenges, we propose a two timescale
user scheduling solution as follows.

Stage I: Queue-aware user-driven feedback filtering. The BS
determines and broadcasts the user feedback probability {p

k

(Q)}
based on the user queueing backlogs Q(t) for every T time slots.
Mobile user k attempts to feedback to the BS in the stage II with
probability p

k

. The motivation behind is to save the feedback cost
by reducing the lower priority users from feeding back.

Stage II: Dynamic User Scheduling based on SINR feedbacks.
Each user k measures the effective SINRs on each receive an-
tenna n according to (1), finds the strongest beam i⇤(k, n) =

argmax

1iM

SINRi

k,n

and reports it to the BS according to prob-
ability p

k

. At the transmitter side, for each beam i, the BS schedules
the user who feeds back the highest SINR on that beam. As a result,

the stage II user scheduling exploits the multi-user diversity among
the set of feedback users.

The two-stage policy can be implemented on a different timescale.
The user selection in stage II is done at every time slot t, while the
user feedback probability {p

k

(Q)} determined in stage I can be
updated once every T time slots. The update period T trades the
performance with the control signaling overhead. With a large T ,
there is a smaller signaling overhead in broadcasting {p

k

(Q)} but
the feedback priority results in being driven by outdated QSI.

Note that, as discussed in Section 5, the user scheduling policy
that considers only CSI is just a special case of the proposed two
timescale policy, while setting p

k

⌘ 1 for each user k in stage I.

4. THE QUEUE-AWARE USER FEEDBACK FILTERING
ALGORITHM

In this section, we derive the low complexity Feedback Filtering
Control Algorithm (FFCA) to determine the probability {p

k

(Q)}
in stage I. We show that, with the FFCA, the two timescale user
scheduling achieves the maximum queue stability region [11].

Let �
k

2 {0, 1} be the feedback indicator of user k. Accord-
ing to the stage I policy, �

k

follows the Bernoulli distribution with
probability p

k

. Let J i

k

(H,�) 2 {0, 1} denotes a mapping from
the user feedback CSI to the user scheduling decision for the k-th
user on the i-th beam. The data rate of user k can be written as
R

k

(H,�) =

P
M

i=1

J i

k

�
k

log(1 + �i

k

), where �i

k

is the feedback
SINR of user k on the i-th beam. In addition, define the conditional
feedback cost S(Q) as S(Q) , E

⇥P
k

�
k

|Q⇤
=

P
k

p
k

(Q). We
develop the feedback filtering control algorithm as follows.

Feedback Filtering Control Algorithm (FFCA): Observing the
current queue length Q(t), users feedback their CSI according to
{p⇤

k

(Q(t))}, where p⇤
k

(Q(t)) is the solution to the following opti-
mization problem,

max

{p
k

}
E


KX

k=1

Q
k

(t)R
k

(H,�)� V S(Q(t))

�
(2)

where V is a positive constant that trades off the performance and
the feedback cost. The following theorem justifies the throughput
optimality [11] under the FFCA in (2).

Theorem 1 (Throughput optimality of the FFCA). The feedback
control {p⇤

k

(Q)} given by FFCA achieves the maximum stability re-
gion over any two timescale scheduling in the MU-MIMO system.

Proof. Please refer to [12] for the proof.

We now derive the solution p⇤
k

(Q(t)) to (2). Define ⌘
k

(S) ,
E
⇥
R

k

(H,�)
���

k

= 1,
P

i

�
i

= S
⇤

as the average data rate of user
k conditioned on S users feedback to the BS (including user k). The
following lemma characterizes the property of ⌘

k

(S).

Lemma 1 (Data rate under a deterministic feedback cost). Define

⌘̂
k

(S) , M

ˆ 1

0

log(1 + x)Nf(x)F (x)NS�1dx

where F (x) = 1� e

�x/P

(1+x)

M�1 is the cumulative distribution function

(CDF) of SINRi

k,n

in (1) and f(x) = @

@x

F (x) is the corresponding
probability distribution function (PDF). We have
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k
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✓
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2
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◆
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.
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Proof. Please refer to [12] for the proof.

Since we typically consider a large number of users, it is rea-
sonable to take ⌘

k

(S) ⇡ ⌘̂
k

(S). The following theorem gives the
optimal solution to determine the feedback probability p⇤

k

(Q(t)) in
(2).

Theorem 2 (Global optimal solution to (2)). Let ⇧ = {⇡(1), . . . ,⇡(K)}
be a permutation of {Q

k

} such that Q
⇡(1)

� Q
⇡(2)

� · · · �
Q

⇡(K)

. The global optimal solution to (2) is given by

p
⇡(k)

= 1, 1  k  S⇤ (3)
p
⇡(k)

= 0, otherwise (4)

where S⇤ is an unique integer that satisfies the following condition

U(S⇤
) � U(S⇤

+ 1) and U(S⇤
) � U(S⇤ � 1) (5)

where S⇤ 2 {1, . . . ,K} and1 U(S) , P
S

k=1

Q
⇡(k)

⌘
⇡(k)

(S)�V S.

Proof. Please refer to [12] for the proof.

Note that the function U(S) can be understood as the queue-
weighted sum rate for the first S prioritized users, with a feedback
cost regularization (the last term). Theorem 2 implies that, under
a two timescale policy, the best choice is to always let the first S⇤

queue-length-prioritized users feedback (whose queues are large),
while keeping the others silent. Meanwhile, the S⇤ is chosen to
maximize the utility U(S). Condition (5) guarantees that we can use
a bisection algorithm to search the optimal S⇤ by evaluating U(S) at
most log

2

(K) times. This suggests that only logarithmic complexity
is required to solve the FFCA.

5. LARGE DEVIATION DELAY ANALYSIS FOR THE
WORST CASE USER

In this section, we will study the queueing delay performance of
the proposed queue-aware two timescale scheduling policy and il-
lustrate the performance gain over the CSI-only baseline policy. We
are interested in the steady state distribution of the worst case queue
length, i.e.,

lim

t!1
Pr( max

1kK

Q
k

(t) > B)

where B is the buffer size. We denote Q
max

(t) = max

k

Q
k

(t)
as the maximum queue length process and Q

max

(1) as the steady
state of the Q

max

(t).
Note that to derive the exact distribution function of Q

max

(1)

is almost impossible due to the complex coupling of the queueing
dynamics in the MU-MIMO system. On the other hand, as one is
usually concerned about the overflow probability of the queueing
system, we can only focus on the asymptotic overflow probability
of Q

max

(1) over an increasing buffer size B. Using the large de-
viation approach [13, 14], this property can be characterized by the
large deviation decay rate function I⇤ defined as follows,

I⇤ , lim

B!1
� 1

B
log Pr (Q

max

(1) > B) . (6)

Using the decay rate function I⇤ in (6), the queue overflow proba-
bility can be written as Pr(Q

max

(1) > B) = e�I

⇤
B+o(B), and

the exponent I⇤ characterizes the tail distribution of the worst case
1For mathematical convenience, we define U(0) = U(K + 1) = �1.

queue length Q
max

(1). It illustrates how quickly the overflow
probability drops when the buffer size B grows. A larger decay
rate I⇤ corresponds to a better performance of the scheduling al-
gorithm in the sense of reducing the worst case delay Q

max

in the
system. In the following, we shall derive the decay rate function I⇤

for the proposed queue-aware policy and compare it with the CSI-
only scheduling policy.

The CSI-only baseline algorithm assumes that each user k feeds
back the SINR for the i⇤(k, n)-th beam on each antenna n, where
i⇤(k, n) = argmax

1iM

SINRi

k,n

. Then for each beam i, the BS
schedules the user who has the highest SINR. The CSI-only baseline
scheme corresponds to a special case of the proposed two timescale
user scheduling by setting p

k

⌘ 1 for each user k in stage I.
Consider a special case where the arrivals A

k

follow Poisson
distributions with parameter �. We first characterize the decay rate
I⇤ for the CSI-only algorithm in the following theorem.

Theorem 3 (Decay rate for the CSI-only algorithm). Let µ
b

=

M log(P logNK)

KL

and �
T

= �K. Suppose � < µ
b

. The large devia-
tion decay rate of Q

max

(1) under the CSI-only baseline algorithm
is given by

I⇤
baseline

⇡ log

M log (P logNK)

�
T

L
. (7)

Proof. Please refer to [12] for the proof.

We can observe that, under a fixed total arrival rate �
T

, the
CSI-only baseline algorithm has an increasing decay rate I⇤ =

O(log log logK) with the number of users K. This explains the
multi-user diversity gain achieved by the CSI-only algorithm.

Similarly, we obtain the following results for the proposed two
timescale user scheduling algorithm.

Theorem 4 (Decay rate for the proposed algorithm). Let µ
0

=

inf

x2[0,1]

µ
p

(x) and �
T

= �K, where µ
p

(x) =
M log

(

P logN

ˆ

S

⇤
(x)

)

L

ˆ

S

⇤
(x)

,
ˆS⇤
(x) =

1

N

exp

�
W (

MNx

V

)

�
and W (x) is the Lambert W func-

tion [15] (defined as W (x)eW (x)

= x). Suppose � < µ
0

. The
large deviation decay rate of Q

max

(1) under the two timescale
user scheduling algorithm can be expressed as

I⇤
prop

� (1� ✏
s

) logK + log

M

�
T

L
+ ✏

s

logR
0

+ C (8)

where ✏ > 0 is a small constant, R
0

=

´
1

0

log (1 + Px) dF (x), and
C =

´
1

✏

�
log

⇥
N log

�
PW

�
MNx

V

��⇤�W
�
MNx

V

� 
dx.

Proof. Please refer to [12] for the proof.

The above result suggests that I⇤
prop

= O(logK) and I⇤
prop

�
I⇤
baseline

for a large number of users K. Recall the tail distribution
of the maximum queue length Pr(Q

max

(1) > B) = e�I

⇤
B+o(B).

It implies that the proposed algorithm enjoys a significantly smaller
overflow probability, and hence, a smaller worst case delay. This
demonstrates the importance of utilizing the queue information for
user scheduling, and the queue-aware algorithm benefits more from
exploiting the multiuser diversity.

In addition, both of the schemes exploit the gain from the MU-
MIMO technology. Note that the large deviation decay rates I⇤

prop

and I⇤
baseline

derived here both scale as O(logM log logN) with
the number of data streams M and receive antennas N . This scaling
property shows the same growth order w.r.t. M and N as that of the
MIMO broadcast channel capacity [2].
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Fig. 1. The overflow probability for the worst case queue
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(1) > B) versus the buffer size B.

6. NUMERICAL RESULTS

In this section, we simulate the queueing delay performance of the
proposed two timescale user scheduling algorithm. We consider a
MU-MIMO system with K users, and packets arrive to the queue of
each user according to a Poisson distribution with rate � = �

T

/K,
where the total arrival rate is �

T

= 7500 packets/second. Each
packet has L = 8000 bits. The system bandwidth is 10 MHz and
the SNR is 10 dB. The number of transmit and receive antennas are
M = 4 and N = 2, respectively. The scheduling time slot is ⌧ = 1

ms and the simulation is run over T
tot

= 100 seconds.
We compare the performance of proposed algorithm against the

following reference baselines. Baseline 1: CSI-only user schedul-
ing (CSIO) [4]. At each time slot, all the users feedback the CSI to
the BS, and the BS schedules a set of users, each of whom has the
highest SINR on the respective beam. Baseline 2: CSI-only user
scheduling with limited feedback (CSIO-LF) [4]. The scheme is
similar to baseline 1 except that the user feeds back to the BS only
when its SINR exceeds a threshold t

SINR

= 2 dB. Baseline 3: Max
weighted queue user scheduling (MWQ) [11]. At each time slot,
all the users feedback their CSI to the BS, and the BS selects a set of
users so that the instantaneous queue-weighted sum rate

P
Q

k

R
k

is maximized. Note that the associated user scheduling problem in
baseline 3 has much higher complexity for user scheduling and feed-
back cost. Hence, baseline 3 serves for performance benchmarking
purpose only.

Fig. 1 shows the overflow probability for the worst case queue
Pr (Q

max

(1) > B) versus the buffer size B, under K = 40 users.
The feedback policy {p

k

} updates on every T = 1, 5, 10 time slots.
The proposed scheme significantly outperforms over baselines 1 - 2.
It also has similar performance as baseline 3. Fig. 2 demonstrates
the average feedback cost S (defined as the average number of users
feedback to the BS at each time slot) versus the number of users K.
The feedback cost of the proposed scheme is less than those of all
the baselines. Note that although baseline 3 has a smaller worst case
queue, it requires all the users feedback to the BS.

Fig. 3 shows the large deviation decay rate over the number of
users. The decay rates I⇤ in (6) are evaluated at buffer size B

0.05

,
where the overflow probability Pr (Q

max

(1) > B
0.05

) = 0.05.
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The decay rate for the proposed scheme grows much faster than
those of baselines 1 - 2 with the number of users K, demonstrat-
ing a better scalability for a large number of users.

7. CONCLUSIONS

In this paper, we proposed a novel two timescale delay-aware user
scheduling algorithm for the MU-MIMO system. The policy con-
sists of a queue-aware mobile-driven feedback filtering stage and a
dynamic SINR-based user scheduling stage. The queue-aware feed-
back filtering control algorithm in stage I was derived through solv-
ing an optimization problem. Under the proposed two timescale user
scheduling algorithm, we also evaluated the queueing delay perfor-
mance for the worst case user using the large deviation analysis.
The large deviation decay rate for the proposed algorithm, scaled
as O (logK), was shown to be much larger than a CSI-only user
scheduling algorithm, which means that the proposed scheme per-
forms better in reducing the worst case delay. The numerical results
demonstrated a significant performances gain over the CSI-only al-
gorithm and a huge feedback reduction over the MWQ algorithm.
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