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ABSTRACT

Multiple-input multiple-output (MIMO) techniques provide high
data rates but the optimal maximum likelihood (ML) detector ex-
hibits high complexity. Recently lattice reduction (LR) aided de-
tectors have been proposed to achieve near-ML performance with
low complexity. In this paper, we develop a LR-aided complex K-
best algorithm which reduces the complexity of the existing sphere
decoding based K-best algorithm. Then we provide the fixed-point
design of the LR-aided K-best MIMO receiver for both coded and
uncoded systems. The architecture selection of each sub-module is
developed and a simulation-based wordlength optimization proce-
dure is proposed. Simulations show that the fixed-point results can
keep bit error rate degradation within 0.2dB under 8× 8 256-QAM
MIMO systems.

Index Terms— Fixed-point, K-best algorithm, lattice reduction

1. INTRODUCTION

With the evolution of wireless communication systems, multiple-
input multiple-output (MIMO) systems have been adopted to pro-
vide high data rates and high performance with maximum likeli-
hood (ML) or near-ML algorithms, which require considerably high
complexity especially with a large number of antennas and/or high
order constellations [1, 2]. To reduce the complexity, suboptimal
detectors, such as zero-forcing (ZF), minimum mean-square error
(MMSE), and successive interference cancelation (SIC), have been
deveoped. However, these schemes exhibit great bit error rate (BER)
degradation compared to the ML detector due to diversity loss [3].

To approach high performance with low complexity, lattice re-
duction (LR) technique can be used in the MIMO detectors [4]. It is
shown that LR-aided ZF, MMSE, and SIC detectors can achieve the
same diversity as the ML detector [5, 6]. Furthermore, the LR-aided
K-best detector can maintain near-ML performance even with smal-
l numbers of candidates, yielding much lower complexity than the
conventional K-best detector [7, 8]. Meanwhile, when the K-best al-
gorithm is implemented in complex domain instead of real domain,
the complexity can be further reduced [9]. So here we focus on the
LR-aided complex K-best MIMO receivers.

When considering practical systems, fixed-point design is a cru-
cial step for hardware implementation in application-specific inte-
grated circuits (ASICs) or field-programmable gate arrays (FPGAs).
Despite the rich publications of the fixed-point design of each sub-
module like QR decomposition, LR, K-best, and Turbo decoder [10,
11, 12, 13], few studies focus on the fixed-point design of the overall
system. In this paper, we aim to realize the fixed-point design of the
overall LR-aided complex K-best MIMO receiver for both uncoded
and coded systems. First, we propose a LR-aided complex K-best al-
gorithm which exploits an on-demand child expansion and a priority
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queue to simplify the implementation. Then, we provide the archi-
tecture selection of each sub-module suitable for hardware. Last, we
propose a simulation-based wordlength optimization scheme, which
can minimize the total bit-width of fixed-point variables with relative
small number of simulation iterations.

Notations: Superscript T denotes the transpose. The real and
imaginary parts of a complex number are denoted as R[·] and I[·].
Upper- and lower-case boldface letters indicate matrices and column
vectors, respectively. Ai,k indicates the (i, k)th entry of matrix A,
IN denotes the N × N identity matrix, and 1N×L is the N × L
matrix with all entries one. Z is the integer set. E{·} denotes the
statistical expectation. ‖ · ‖ denotes the 2-norm.

2. SYSTEM MODEL

Let us consider spatial multiplexing MIMO transmission with Nt

transmit and Nr receive antennas as

y = Hs + w, (1)

where s = [s1, s2, · · · , sNt ]
T , (si ∈ S) is the complex symbol vec-

tor with S being a constellation set of square QAM, H is an Nr ×
Nt, (Nr ≥ Nt) complex channel matrix, y = [y1, y2, · · · , yNr ]T

is the received signal vector, and w = [w1, w2, · · · , wNr ]T is the
complex additive white Gaussian noise (AWGN) vector with zero
mean and covariance N0INr . The real and imaginary parts of S are
{−
√
M + 1,−

√
M + 3, · · · ,

√
M − 1} with M being the constel-

lation size. We assume a quasi-static channel environment, i.e., H
is invariant during a block and changes independently from block to
block. We also assume that H is known at the receiver, but unknown
at the transmitter.

Given the model in Eq. (1), the ML detector is

ŝML = arg min
s̃∈SNt

‖y −Hs̃‖2, (2)

which is generally non-deterministic polynomial hard (NP-hard).

2.1. LR-aided Detectors

Since the LR-aided detection only works for infinite lattice, it relaxes
the boundary constraints in Eq. (2) to infinite lattice as

ŝ = arg min
s̃∈UNt

‖y −Hs̃‖2, (3)

where U is the unconstrained constellation set with the form (2Z +
1) + (2Z + 1)j.

However, since the problem in Eq. (3) loses the boundary infor-
mation of QAM, it is generally not diversity-multiplexing tradeoff
(DMT) optimal [14]. Instead, to achieve the DMT optimality, we
adopt the MMSE-regularized problem as [15]

ŝ = arg min
s̃∈UNt

‖y −Hs̃‖2 +
N0

σ2
s

‖s̃‖2

= arg min
s̃∈UNt

‖ȳ − H̄s̃‖2 (4)
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where E{ssH} = σ2
sI, ȳ is the extended received signal vector

expressed as [yT ,01×Nt ]
T , and H̄ is the MMSE-extended matrix

as [HT ,
√
N0/σ2

sINt ]
T .

To solve the problem in Eq. (4) with lower complexity, LR ob-
tains a more “orthogonal” matrix H̃ = H̄T, where T is a unimod-
ular matrix, such that all the entries of T are Gaussian integers, and
the determinant of T is±1 or±j. Given H̃ and T, Eq. (4) becomes

ŝ = 2T arg min
z̃∈ZNt

‖ỹ − H̃z̃‖2 + (1 + j)1Nt×1, (5)

where ỹ is the received signal vector after shifting and scaling as
(ȳ − H̄1Nt×1(1 + j))/2 and s̃ = 2Tz̃ + (1 + j)1Nt×1. Since H̃

is more “orthogonal,” the closest point search based on H̃ can enjoy
much lower complexity compared to that based on H̄ in Eq. (4) [16].
However, the problem in Eq. (5) is still NP-hard, which means that
the closest point search is still prohibitive when Nt is large.

3. LR-AIDED COMPLEX K-BEST ALGORITHM

To achieve near-ML performance with low complexity, here we pro-
pose the LR-aided complex K-best algorithm for the problem in (5).

With QR decomposition H̃ = QR, where Q is an (Nr +Nt)×
Nt orthonormal matrix and R is a Nt ×Nt upper triangular matrix,
the problem in (5) can be rewritten as

ŝ = 2T arg min
z̃∈ZNt

‖y̆ −Rz̃‖2 + (1 + j)1Nt×1, (6)

where y̆ = QHỹ.
Next, the breadth-first search from the Ntth layer to the 1st lay-

er is performed in the LR-aided complex K-best algorithm. For each
layer (e.g., the nth layer), the pseudo code of the processing proce-
dure is summarized in Table 1 denoted as Find Kbest Children()

subroutine, where a patrial candidate of the layer is defined as z
(n)
i

as [z
(n)
i,n , · · · , z

(n)
i,Nt

]T , the cost of the partial candidate is

cost
(n)
i =

Nt∑
j=n

|y̆j −
Nt∑
k=j

Rj,kz
(n)
i,k |

2, (7)

and a partial candidate of the nth layer z
(n)
i is defined as a child

of a partial candidate of the (n + 1)st layer z
(n+1)
j if and only

if z
(n)
i = [z

(n)
i,n , (z

(n+1)
j )T ]T , z

(n)
i,n ∈ Z + Zj holds. Therefore,

for the nth layer, the algorithm finds the K best partial candidates
[z

(n)
1 , z

(n)
2 , · · · , z(n)

K ], i.e., the K partial candidates that have the
minimum costs among all the children of the K partial candidates
[z

(n+1)
1 , z

(n+1)
2 , · · · , z(n+1)

K ] in the previous (n + 1)st layer. This
process is initiated at (Nt + 1)th layer as len = 1, z

(Nt+1)
1 = [],

and cost(Nt+1)
1 = 0. After the 1st layer is reached, the K best

candidates with minimum costs can be obtained as

ŝk = Q(2Tz
(1)
k + (1 + j)1Nt×1), k = 1, 2, ...,K. (8)

The main difficulty of the LR-aided K-best algorithms is that
the valid children for each parent is infinite. To address the infinite
children issue, similar to the LR-aided real K-best algorithm in [8],
our proposed LR-aided complex K-best algorithm exploits an on-
demand child expansion and a priority queue. However, different
from the real case, the LR-aided complex K-best algorithm employs
the complex Schnorr-Euchner (SE) strategy [17, 18], where the chil-
dren of a parent in the nth layer are classified as two categories:

• Type I, where the real part of z(n)
i,n of the child z(n)

i is the same

as the real part of z(n)
k,n, where z

(n)
k is the child with the lowest

cost among all the children of the same parent.
• Type II, otherwise.

Once a Type I child is chosen as one of the K-best children, both
the real (lines 13-24 in Table 1) and imaginary SE (lines 28-33 in
Table 1) expansions are executed to guarantee that the next smallest
child of the same parent is in the priority queue, while for a Type II
child, only imaginary SE expansion is used (lines 28-33 in Table 1).

Since the priority queue has, at most, 2K elements, the complex-
ity of its updating (lines 24 and 33 in Table 1) is O(log2(2K)) '
O(log2(K)). Therefore, the overall complexity of the proposed LR-
aided complex K-best for each layer is O(NtK +K log2(K)).

In uncoded systems, the hard output of the LR-aided complex
K-best detector is ŝ = arg mins̃∈{ŝk}Kk=1

‖y − Hs̃‖2. In coded
systems, the LR-aided complex K-best detector can be used in the
iterative detection and decoding (IDD) structure to improve the per-
formance [19]. In this scheme, the detector outputs the soft informa-
tion of each coded bit to the decoder, which can be well approxmated
by the log-likelihood ratio (LLR) as follows [19]:

LE(ci) ≈
1

2
max

c∈Cs∩S+1
i

{
− 2

N0
‖y −Hs̃‖22 + cTLA − LA(ci)

}
−1

2
max

c∈Cs∩S−1
i

{
− 2

N0
‖y −Hs̃‖22 + cTLA + LA(ci)

}
,

(9)
where c is the transmitted coded bit vector mapped into the symbol
vector s̃, LA denotes the prior information of c from the channel
decoder, Cs is the candidate list of the transmitted coded bit vectors
corresponding to {ŝk}

K
k=1 from the output of the LR-aided K-best

MIMO detector, S+1
i represents the subset of Cs with the ith bit

being +1, and similarly for S−1
i , so that Cs = S+1

i ∩ S−1
i .

4. FIXED POINT REALIZATION

The fixed-point realization contains two parts: the architecture selec-
tion and the fixed-point conversion with wordlength optimization.
The former is to facilitate the hardware implementation, while the
latter is to minimize the bit-width of fixed-point variables so that the
hardware cost such as power, area, and delay can be reduced.

4.1. Architecture Selection of Each Sub-modules
QR Decomposition: There are three well known algorithms to per-
form QR decomposition [20], i.e. Householder transformation, Gram-
Schmidt, and Givens rotation. Here we adopt the Givens rotation
algorithm implemented by Coordinate Rotation Digital Computer
(CORDIC) scheme under Triangular Systolic Array (TSA) in [21].
CORDIC is attractive due to the simple shift and add operations in
hardware. And the TSA structure can be efficiently implemented by
parallel and pipelining fashions to reduce the latency.
Lattice Reduction: Different LR techniques have been summarized
in [4] for MIMO detection. Among them, Lenstra-Lenstra-Lovasz
(LLL) [22] algorithm is a popular scheme, which can approach the
optimal performance with low complexity. Here we adopt the mod-
ified complex LLL scheme proposed in [11], which is suitable for
hardware realization by transforming the complicated division and
the inverse square-root operations into Newton-Raphson iteration
and Householder CORDIC algorithm, respectively.
Complex K-best Algorithm: The main processing procedure of the
complex K-best is the Find Kbest Children() subroutine summa-
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Input: {z(n+1)
k }lenk=1, {cost(n+1)

k }lenk=1

Output: {z(n)
k }

K
k=1, {cost(n)

k }
K
k=1

(1) For i = 1 to len
(2) ri = y̆n −

∑N
l=n+1Rn,lz

(n+1)
i,l

(3) zi = dri/Rn,nc
(4) childi = [zi, (z

(n+1)
i )T ]T

(5) parenti = i

(6) childcosti = cost
(n+1)
i + |ri −Rn,nzi|2

(7) stepi = sgn(ri/Rn,n − zi)
(8) typei = 1
(9) End for
(10) Initialize priority queueQ with {childcosti}leni=1 as keys
(11) For k = 1 to K
(12) Find the index i associated with the minimum key inQ
(13) If typei = 1 then
(14) len = len+ 1
(15) rlen = ri
(16) parentlen = parenti
(17) R[zlen] = R[zi] + R[stepi]
(18) I[zlen] = I[zi]

(19) childlen = [zlen, (z
(n+1)
parentlen

)T ]T

(20) childcostlen = cost
(n+1)
parentlen

+ |rlen −Rn,nzlen|2
(21) R[steplen] = −R[stepi]− sgn(R[stepi])
(22) I[steplen] = I[stepi]
(23) typelen = 1
(24) UpdateQ by adding the key childcostlen
(25) End if
(26) z

(n)
k = childi

(27) cost
(n)
k = childcosti

(28) I[zi] = I[zi] + I[stepi]

(29) childi = [zi, (z
(n+1)
parenti

)T ]T

(30) childcosti = cost
(n+1)
parenti

+ |ri −Rn,nzi|2
(31) I[stepi] = −I[stepi]− sgn(I[stepi])
(32) typei = 2
(33) UpdateQ using childcosti as the new key
(34) End for
(35) len = K

(36) Output {z(n)
k }

K
k=1, {cost

(n)
k }

K
k=1

Table 1. The proposed Find Kbest Children() subroutine.

rized in Table 1. To speed up the procedure, here we avoid the di-
vision operation (lines 3 and 7 in Table 1) by normalizing the in-
put y̆ and R with the corresponding diagonal element of R, i.e.
~yi = y̆i/Ri,i, and ~Rn,i = Rn,i/Ri,i, ∀n. Meanwhile, the priority
queue is implemented by a binary min-heap data structure, which
can efficiently implement inserting and deleting candidates by up-
heap and down-heap operations, respectively.
LLR Calculation: Because of the partial candidate list in LR-aided
complex K-best MIMO detector, the LLR value LE in (9) may be
large enough to prevent the decoder from correcting the error data.
To avoid this problem, here we adopt LLR clipping [19] which limits
the range of LLR values so that the decoder can still overcome some
error data. Furthermore, it can also reduce the wordlength of the
fixed-point design to decrease the hardware complexity.
Turbo Decoding: The Turbo decoder contains two elementary MAP
decoders interconnected to each other by interleavers and deinter-
leavers in serial way [23]. Here we adopt the Max-Log-MAP scheme,
which has almost the same performance as the MAP algorithm with
much lower complexity [24]. For this scheme, the process of each

constituent decoder consists of computing Branch Metric γ, Forward
Recursion α, Backward Recursion β, and Extrinsic information Le.

4.2. Fixed-point Conversion with Wordlength Optimization
For the fixed-point conversion, all floating-point data types and arith-
metic operations are transformed into the corresponding fixed-point
version. So we develop a complete fixed-point C model, which is
bit-accurate with Verilog HDL source code so that it can mimic the
practical data operation in hardware.

After the conversion, we optimize the wordlength to find the
minimum bit-width for each fixed-point variable when the perfor-
mance is kept within the tolerated error metric. The optimization
can be performed by analysis or simulation [25]. The former is
usually conservative and difficult to analyze in nonlinear and un-
smooth operations [26]. So here we adopt the latter. However, the
simulation-based scheme is an NP-hard combinatorial problem [27],
which leads to exceedingly long simulation time. To avoid this prob-
lem, we propose a scheme by combining the Heuristic procedure and
Max-1 bit procedure summarized in [28]. It utilizes the small num-
ber of iterations from the Heuristic procedure and the minimum total
bit-width from Max-1 bit procedure. The proposed wordlength opti-
mization procedure is depicted in Fig. 1 and summarized as follows:

Range 
Estimation 

Start 

Get iwl 

Precision 
Estimation 

Get fwl 

End 

Find fwlmin 

Find fwlmax 

Perform 
fwlmax -1 

Fig. 1. The proposed wordlength optimization procedure.

• Range Estimation: Determine the minimum integer wordlengh
(iwl) to prevent overflow and underflow, which can be obtained
by examining the histograms of each fixed-point variables under
large data simulation.

• Precision Estimation: Find the minimum fraction wordlengh
(fwl) so that the performance degradation under quantization
noise can be retained within the tolerated error metric. This step
consists of the following three sub-steps:
§ Find fwlmin: Obtain the smallest fwl of each variable that

satisfies the tolerated error metric when the fwl of all other
variables are large enough (here we use 32 bits).
§ Find fwlmax: Increase fwlmin of all variables simultaneous-

ly with 1 bit as step size until the tolerated error metric is met.
The updated values of fwlmin are the corresponding fwlmax.
§ Perform fwlmax−1: Record the BER by reducing the fwlmax

of each variable 1 bit while keeping the fwlmax of all other
variables unchanged. The fwlmax of the variable with the
best BER performance is updated as fwlmax−1. This process
is repeated until the tolerated error metric is not satisfied to get
the final optimized fwl.
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5. NUMERICAL RESULTS

In this section, we first simulate different MIMO detectors in floating-
point to demonstrate their performance. Then we provide the fixed-
point results of our proposed LR-aided complex K-best algorithm.
The parameters of the simulation are summarized in Table 2.

Antenna number 8× 8 MIMO
and modulation with 256 QAM

Channel modeling i.i.d. Rayleigh fading channel with AWGN
MIMO Proposed LR-aided complex K-best, ML

detectors LR-aided real K-best [8], Real K-best [2]
Candidate Number K K = 3, 7, 15, 63, 127, 1023

Turbo code with code rate: 1/2
Channel coding Codeword length: 1024

Code generator: (1, 1+D2

1+D+D2 )

Iteration number 4 iterations between detector and decoder
of IDD receiver 8 iterations within the turbo decoder

Table 2. Simulation parameters.

Fig. 2 shows that LR-aided K-best only needs K=15 to achieve
near-ML performance in uncoded systems, while the conventional
K-best needsK=255 to have similar performance. Fig. 2 also shows
that both LR-aided real and complex K-best have almost the same
performance given the same K.

16 18 20 22 24 26 28 30
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−4
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10
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10
−1

10
0

Eb/No (dB)

B
E

R

 

 

LR−aided complex K−best, K=3
LR−aided real K−best, K=3
LR−aided complex K−best, K=7
LR−aided real K−best, K=7
LR−aided complex K−best, K=15
LR−aided real K−best, K=15
Real K−best, K=3
Real K−best, K=7
Real K−best, K=15
Real K−best, K=127
Real K−best, K=255
ML

Fig. 2. Floating-point performance of uncoded systems.

Fig. 3 displays that the performance gain of LR-aided K-best is
decreased compared to K-best in coded systems (here we omit the
LR-aided real K-best since its results are almost the same as the LR-
aided complex K-best). But we can still have 1 dB gain at 10−4 BER
with a reasonable value K=15 in practice.

Based on the above results, we chooseK=15 for the fixed-point
design of the proposed LR-aided complex K-best MIMO receiver.
Here we set BER as the error metric and make the the energy per
bit to noise power spectral density ratio (Eb/No) degradation after
fixed-point design kept within 0.2dB at 10−4 BER. The wordlength
optimization procedure is refereed to the scheme in Fig. 1. The op-
timized configurations of the key fixed-point variables of each sub-
module are summarized in Table 3, and the corresponding perfor-
mance is depicted in Fig. 4, which satisfies our predefined BER
requirement.
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LR−aided complex K−best, K=3
Real K−best, K=3
LR−aided complex K−best, K=15
Real K−best, K=15
LR−aided complex K−best, K=63
Real K−best, K=63
LR−aided complex K−best, K=127
Real K−best, K=127
Real K−best, K=1023

Fig. 3. Floating-point performance of coded systems.

Complex K-best

~yi ~Rn,i ri zi costi

(8,12) (1,14) (8,12) (9,0) (8,12)

CLLL CORDIC in QR

Q R T data angle

(1,13) (5,13) (9,0) (6,11) (4,12)

Turbo Decoding LLR

Le α β γ LE

(4,2) (7,3) (7,3) (6,3) (4,3)

Table 3. Fixed-point configurations (iwl, fwl) of key parameters.

18 20 22 24 26 28 30
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Uncoded, Real K−best, Floating−point
Uncoded, LR−aided complex K−best, Fixed−point
Uncoded, LR−aided complex K−best, Floating−point
Coded, Real K−best, Floating−point
Coded, LR−aided complex K−best, Fixed−point
Coded, LR−aided complex K−best, Floating−point

Fig. 4. Fixed-point results of LR-aided complex K-best detectors.

6. CONCLUSION

In this paper, we developed the fixed-point design of the LR-aided
K-best MIMO receiver. First, we proposed a LR-aided complex K-
best algorithm to facilitate the hardware realization. Then we pro-
vided the architecture selections and developed a simulation-based
wordlength optimization scheme to obtain the fixed-point configura-
tions. In future, we will implement the proposed LR-aided complex
K-best algorithm in hardware to validate our fixed-point design.
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