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ABSTRACT

This paper studies the joint beamforming and power control in a
multiuser distributed antenna uplink network, wherein the number
of users and the number of separately located antennas grow large
with ratio being bounded. We consider the SINR fairness problem
under individual power constraint and present a distributed iterative
algorithm. This algorithm, though converging to the instantaneous
optimal solution, requires instantaneous power update. In order to
design a low complexity algorithm that achieves optimality in the
asymptotic sense, we leverage the large system structure to derive
an asymptotic solution requiring only channel statistics. In this al-
gorithm, the asymptotic power is slowly updated and the asymptotic
beamformer can be obtained in a non-iterative manner. The conver-
gence property of the proposed algorithm is also studied.

Index Terms— Power control, beamforming, large distributed
multiple-antenna network, random matrix theory, nonlinear Perron-
Frobenius theory

1. INTRODUCTION

Small-cell network [1] has demonstrated the potential to improve
the spectral efficiency of current wireless networks and increase the
flexibility of network operation. Such economical network structure
involves dense deployment of distributed low-power, low-cost base
stations that can operate in a fully self-organizing manner, or form
a cooperative cluster [2] to enable joint processing. In this work,
we are interested in a large distributed structure of base stations that
operate in a cooperative manner to their serving users, in order to
jointly satisfy the system metric of interest. Due to practical con-
straints such as the finite capacity of the backhaul [2] and limited
feedback [3], low complexity efficient algorithms are often favored
to help scale the system performance. Herein, we consider a joint
beamforming and power control problem [4] in a distributed antenna
uplink network to enforce max-min fairness across users, and lever-
age the large system structure to design an efficient algorithm.

Relation to Prior Work and Contributions: The max-min fair-
ness, also known as SINR balancing problem is one canonical
problem in optimization [5–10]. It was tackled using mainly three
methodologies. The first approach [5, 6] relies on an extended
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coupling matrix, and the second approach [7] employs conic pro-
gramming. These two approaches are centralized, and can not
characterize the convergence rate of the algorithm. The recent third
approach [8–10] uses nonlinear Perron-Frobenius theory to prove
the convergence rate of the proposed algorithm. Herein, we are
interested in a multiuser uplink with individual power constraint,
and we employ the power control algorithm in [10] as the building
block to present a distributed algorithm to compute the optimal
power and beamformer. The algorithm uses an iterative approach
to compute the instantaneous optimal power, whose complexity in-
creases with the system dimension. In order to obtain an efficient
algorithm that can leverage the large system structure [11], we em-
ploy random matrix theory [12] to examine the asymptotic behavior
of the system. The concept of designing a low complexity algorithm
to achieve max-min fairness was initially considered in [13] for a
generic multiuser downlink. Similar strategy is employed in [14]
for a power minimization problem. In [15], asymptotic analysis
is utilized to compare several cooperative schemes. In [16], we
consider algorithmic issues for a coordinated multicell downlink
with network duality [17]. Leveraging random matrix theory also
provides insights into other important system design problems, e.g.,
see [18–20] and the reference therein. Herein, we consider a large
distributed antenna uplink network, whose distributed geometry
further complicates the transition from asymptotic analysis to al-
gorithm design. Moreover, we study the convergence property of
the proposed algorithm and draw relationship with the co-located
antenna case in [16]. The effectiveness of the algorithm is further
demonstrated with simulation results.

2. SYSTEM MODEL

Consider a distributed multiple-antenna uplink network with K
single-antenna users transmitting simultaneously to N distributed
base stations, which are connected to a central processing unit
through dedicated backhaul, i.e., see Fig. 1 for illustration. Each
distributed base station is assumed to be equipped with a single
antenna, and the analysis in this work can be directly extended to
the scenario with multiple antennas per distributed base station. The
central processing unit is assumed to process the signals from the N
base stations, wherein this virtual cell assumption corresponds to a
cooperative small cell network. The received vector y ∈ CN×1 at
the central processing unit is written as

y =

K∑

k=1

√
pk

K
hkxk + z, (1)

5026978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



Fig. 1. Illustration of a large distributed multiple-antenna network.

where pk
K

denotes the transmit power of user k, xk is an informa-
tion symbol with unit power, hk , (h1,k, · · · , hN,k)T ∈ CN×1

represents the channel vector from user k to the N distributed base
stations, and z characterizes the additive white noise effect with zero
mean and covariance matrix σI.

Linear beamforming strategy is assumed at the central process-
ing unit, and thus a set of beamforming vectors is employed to map
the received signal to independent scalar decoders for recovering the
transmitted symbol. Denote uk ∈ CN×1 as the normalized beam-
former for user k, i.e., ||uk||2 = 1, then the SINR for user k is
expressed as

Γk(p,U) =
pk
K
|u†khk|2∑

l6=k
pl
K
|u†khl|2 + σ

, (2)

where p = (p1, · · · , pK)T, U = (u1, · · · ,uK).
Now consider a joint beamforming and power control prob-

lem, where the objective is to maximize the minimum weighted
SINR among users under individual power constraint, in order
to enforce egalitarian fairness across users. Let βk represent
the priority for user k illustrating different service priorities with
β = [β1, . . . , βK ]T. The weighted SINR balancing problem subject
to individual power constraint can be written as

maximize min
k

Γk(p,U)
βk

subject to 0 ≤ pk ≤ p̄, ∀k
‖uk‖2 = 1, ∀k

variables : p,U.

(3)

3. FINITE SYSTEM ANALYSIS

The optimization problem (3) appears non-convex, but can be solved
in an optimal manner by using geometric transformation. However,
employing standard convex optimization methods to find the optimal
solution typically requires centralized computation and incurs a fair
amount of parameter tuning. In this section, we present a distributed
algorithm for computing the optimal solution of (3) by using nonlin-
ear Perron-Frobenius theory and techniques developed in [8, 10].

For any given beamforming matrix U, a simpler optimization
problem for (3) can be formulated by only optimizing the power
vector p(U). It is known that at optimality, the weighted SINR
for different users are the same, and there exists at least one user
that achieves the maximum power p̄ [8, 10]. Furthermore, given the
power vector p, the optimal beamforming matrix U∗(p) (up to a
scaling factor) can be shown to be the minimum variance distortion-
less response (MVDR) beamformer, namely:

u∗k(p) =
(
∑

l6=k
pl
K

hlh
†
l + σI)−1hk

‖(∑l6=k
pl
K

hlh
†
l + σI)−1hk‖

. (4)

In [10], a distributed algorithm is proposed to solve the power
control problem. Herein, we present the following distributed algo-
rithm (Algorithm A) to compute the optimal solution for the joint
beamforming and power control problem (3).

Algorithm A:

• Initialize arbitrary p[0] ∈ RK×1
++ , and uk[0] ∈ CN×1 for

k = 1, . . . , K such that ‖uk[0]‖2 = 1, and pk[0] ≤ p̄, ∀k.

1. Update power p[ı + 1]:

pk[ı + 1] =

(
βk

Γk(p[ı],U[ı])

)
pk[ı] ∀k. (5)

2. Normalize p[ı + 1]:

pk[ı + 1] ← pk[ı + 1]p̄

maxl pl[ı + 1]
∀k. (6)

3. Update beamforming matrix U[ı + 1]:

uk[ı + 1] =
(
∑

l 6=k
pl[ı+1]

K
hlh

†
l + σI)−1hk

‖(∑l 6=k
pl[ı+1]

K
hlh

†
l + σI)−1hk‖

∀k. (7)

The convergence property of Algorithm A is presented in the
following theorem.
Theorem 1. Starting from any initial point p[0], and U[0], the p[ı],
and U[ı] in Algorithm A converge geometrically fast to the optimal
solution p∗, and U∗.

Proof. (Sketch) The key step to the proof is to establish the con-
vergence property of the power p via nonlinear Perron-Frobenius
theory [21]. Define the mapping f (1) : RK×1

+ → RK×1
+ as

f
(1)
k (p) =

βk

h†k(
∑

l6=k
pl
K

hlh
†
l + σI)−1hk

. (8)

It can be shown that f
(1)
k (p) is a concave self-mapping of p. Note

that the individual power constraint in (3) induces a norm on RK×1
+ :

‖p‖∞ , maxl(pl/p̄), which is different from the induced norm
in [16] with a weighted sum power constraint. The rest of the proof
can be carried out using a technique similar to that in [16, Theorem
1].

Even though the algorithm can compute the optimal beamformer
and power for (3), and is computationally fast, it is iterative in nature.
The instantaneous power has to be iteratively updated to compute
the optimal beamformer. This distributed algorithm is suitable for
a finite system when K and N are not sufficiently large. In order
to leverage the large system structure to design a low complexity
algorithm that computes the power vector only depending on channel
statistics, we perform a large system analysis next.

4. LARGE SYSTEM ANALYSIS AND ALGORITHM
DESIGN

This section is devoted to the large system analysis when K and
N grows sufficiently large while the ratio lim K

N
remains bounded.

Intuitively, we aim to obtain the asymptotically optimal power that
only depends on channel statistics and so can be updated in a slower
time scale. Once the asymptotic power is obtained, the beamformer
can be non-iteratively computed using (4). Also, the asymptotic
power for each user can be used for transmission.
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4.1. Channel Model

Now we present the channel model employed in this section. Firstly,
different users may possess different large scale channel effects in-
cluding path loss and shadowing. Secondly, since the base stations
are located in a distributed manner, the large scale channel effects
between different base stations and a given user can be different.
The following channel model is assumed for further analysis:

hk = D
1
2
k h̃k, (9)

where Dk , diag(d1,k, · · · , dN,k) and dn,k represents the large
scale channel effect between base station n and user k. The h̃k de-
notes the normalized CSI whose elements are independent and iden-
tically distributed as CN (0, 1). This assumption corresponds to the
scenario when the distributed antennas are located far apart and there
is no spatial correlation across the distributed antennas. Herein, the
channel model (9) is employed for further analysis and algorithm
design. Dealing with some practical limitations such as channel es-
timation error, line of sight, and more general channel models can be
found in recent advances related to large random matrix theory, e.g.,
see [19, 20] and the reference therein.

4.2. Large System Result

From (5), we know that in order to compute the asymptotic power,
the asymptotic analysis for Γk is needed. Substituting the MVDR
beamformer in (4), we have

Γk(p) =
pk

K
h†k


∑

l6=k

pl

K
hlh

†
l + σI



−1

hk. (10)

The instantaneous Γk(p) is a random variable in quadratic form.
Our aim is to examine the deterministic quantity that tightly ap-
proximates Γk(p) in the asymptotic sense. Such asymptotic ap-
proximation, or deterministic equivalent, can be obtained by exten-
sively referring to the Stieltjes transform method (or Bai-Silverstein
method) [22–24]. The asymptotic approximation for Γk(p) under
the assumed channel model is given in the following lemma.

Lemma 1. The instantaneous random variable Γk(p) can be ap-
proximated by a deterministic quantity1 γk(p) such that Γk(p) −
γk(p)

a.s.−→ 0 as the system dimension N → ∞. Also, γk(p) =
pkφk(p), where φk(p) is described by the following implicit K sys-
tem equations:

φk(p) =
1

K

N∑
n=1

dn,k

σ +
dn,l

K

∑
l6=k

pl
1+plφl(p)

∀k. (11)

Proof. The main proof relies on [24, Theorem 1] and [24, Theorem
2] and thus is omitted here.

Before performing algorithm design, we examine two special
cases for the distributed multiple-antenna network. In the first spe-
cial case, we have dn,k = dk, which corresponds to the co-located
antenna scenario, i.e., one base station with N antennas. In the sec-
ond special case, we have dn,k = dn, which corresponds to the co-
located user scenario, i.e., users having the same set of large scale

1Note that we present the asymptotic behavior of Γk(p) with a given
power vector p, not with the instantaneous optimal power vector p∗. The
instantaneous optimal power vector is a function of channel and thus com-
plicates standard large system analysis. Herein, iterative method is used to
compute the asymptotic power.

channel effects to the distributed base stations. For these two spe-
cial cases, the asymptotic expression and calculation for Γk(p) can
be further simplified since they correspond to the separable variance
profile defined in [23]. Herein, we present the asymptotic approxi-
mations for these two cases in the following corollaries.

Corollary 1. For the first case with co-located antennas, ΓCA
k (p)

can be approximated by a deterministic quantity γCA
k (p) such that

ΓCA
k (p) − γCA

k (p)
a.s.−→ 0 as the system dimension N → ∞. Also,

γCA
k (p) = pkφCA

k (p), where φCA
k (p) is described by the following

fixed-point equation:

φCA
k (p) =

N

K

dk

σ + dl
K

∑
l6=k

pl

1+plφ
CA
k

(p)

∀k. (12)

Corollary 2. For the second case with co-located users, ΓCU
k (p)

can be approximated by a deterministic quantity γCU
k (p) such that

ΓCU
k (p) − γCU

k (p)
a.s.−→ 0 as the system dimension N → ∞. Also,

γCU
k (p) = pkφCU

k (p), where φCU
k (p) is described by the following

fixed-point equation:

φCU
k (p) =

1

K

N∑
n=1

dn

σ + dn
K

∑
l6=k

pl

1+plφ
CU
k

(p)

∀k. (13)

Remark: Comparing (12) and (13) with (11), it can be seen that
the inter-dependence of the vector φ , (φ1, · · · , φK)T is much
simplified in the two special cases. For the general case (11), φ is
obtained by solving the K dependent system equations. However,
for the two special cases, each φk can be solved separately by the
fixed-point equation.

4.3. Algorithm Design and Convergence Analysis

In this part, the obtained large system result is employed for algo-
rithm design to compute the asymptotic power. From (11), it can be
observed that p and φ are coupled and their relationship only de-
pends on channel statistics reflected in the Dk. Herein, in order to
design efficient algorithm to compute p and φ, we need to examine
the conditional convergence property of these two vectors separately.

The convergence property of φ given p is provided in the fol-
lowing theorem.

Theorem 2. For a given p, starting from any initial φ[0], the follow-
ing iterative computation of φ[]:

φk[ + 1] =
1

K

N∑
n=1

dn,k

σ +
dn,l

K

∑
l6=k

pl
1+plφl[]

∀k (14)

converges to the unique solution of the implicit system equations
expressed in (11).

Proof. (Sketch) Define the mapping f (2) : RK×1
+ → RK×1

+ as

f
(2)
k (φ) =

1

K

N∑
n=1

dn,k

σ +
dn,l

K

∑
l6=k

pl
1+plφl

. (15)

The key step establishing the proof is to show that f
(2)
k (φ) is a stan-

dard interference function [25] that satisfies monotonicity and scala-
bility. The detailed proof is omitted. After proving that the mapping
is a standard interference function, the convergence property follows
from [25].
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The convergence property of p given φ is provided in the fol-
lowing theorem.

Theorem 3. For a given φ, starting from any initial p[0], the follow-
ing iterative computation of p[]:

pk[+1] = min





βkK




N∑
n=1

dn,k

σ +
dn,l

K

∑
l6=k

pl[]
1+pl[]φl




−1

, p̄




∀k

(16)
converges to the optimal solution of the following power control
problem:

maximize min
k

γk(p)
βk

subject to 0 ≤ pk ≤ p̄, ∀k
variables : p.

(17)

Proof. (Sketch) Define the mapping f (3) : RK×1
+ → RK×1

+ as

f
(3)
k (p) = βkK




N∑
n=1

dn,k

σ +
dn,l

K

∑
l6=k

pl
1+plφl



−1

. (18)

It can be proved that f
(3)
k (p) is a standard interference function.

From [25, Theorem 7], the mapping min{f (3)
k (p), p̄} is standard.

Then, since at optimality of (17), the weighted γk are the same and at
least one user achieves p̄, the aforementioned mapping can be linked
to the optimal solution of (17). The detailed proof is omitted. Note
that another proof is to use the nonlinear Perron-Frobenius theory
to prove that f

(3)
k (p) is a concave self-mapping under the induced

norm defined in Theorem 1.

Now, by combining the results from Theorem 2 and Theorem 3
that treat φ and p separately, we present a single timescale algorithm
(Algorithm B) to compute the asymptotic power, as follows. Note
that the joint convergence property of the algorithm remains to be
proved, and is observed empirically in Section 5.

Algorithm B:

• Initialize arbitrary p[0] ∈ RK×1
++ for k = 1, . . . , K such that

pk[0] ≤ p̄, ∀k.

1. Update power p[ + 1]: ∀k

pk[ + 1] = min





βkK




N∑

n=1

dn,k

σ +
dn,l

K

∑
l6=k

pl[]
1+pl[]φl[]




−1

, p̄





.

(19)

2. Update φ[ + 1]:

φk[ + 1] =
1

K

N∑

n=1

dn,k

σ +
dn,l

K

∑
l6=k

pl[+1]
1+pl[+1]φl[]

∀k. (20)

Remark: The time scales for Algorithm A and Algorithm B
are vastly different. Algorithm A iteratively computes the instan-
taneous optimal power, and Algorithm B computes the asymptotic
power depending only on channel statistics. This algorithm design
not only leverages the large system structure to reduce the system de-
sign complexity, but also has the potential to achieve the optimality
in the asymptotic sense.
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Fig. 2. Convergence plot of the weighted SINR employing Algo-
rithm B.
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Fig. 3. Comparison of the achieved weighted SINR for each individ-
ual user using asymptotic beamformer and the optimal beamformer
for one channel realization.

5. NUMERICAL RESULTS

In this section, a numerical study is conducted. We consider N = 50
distributed antennas randomly placed in a 500m×500m area with
K = 50 randomly dropped users. The path loss (in dB) model is
assumed to be 15.3 + 37.6 log10 d for distance d in meters and a
log-normal shadowing with standard deviation of 8 dB is employed.
The noise power spectral density is set to be −162 dBm/Hz. Each
user has the same priority of service (β = 1), and the maximum
power p̄ = 100 mW.

For a given geometry, we demonstrate the convergence behav-
ior of the weighted SINR using Algorithm B in Fig. 2. The SINR
of all users are not differentiated, and use the same type of line for
illustration. From Fig. 2, the joint convergence of the proposed algo-
rithm is observed empirically (the conditional convergence is proved
in Section 4.3). The convergence plot as well as the converged value
depend on both the placement of the antennas and the user geometry.
Our empirical results observe that the convergence happens within
100 runs of iteration. Fig. 3 shows the comparison of the weighted
SINR for each individual user using optimal beamformer and the
asymptotic beamformer, for one channel realization. For the optimal
beamformer case, the instantaneous optimal power and beamformer
are computed using Algorithm A. For the asymptotic beamformer
case, the asymptotic power is computed in advance using channel
statistics to non-iteratively determine the instantaneous beamformer.
We can see from Fig. 3 that the achieved SINRs for the latter case
fluctuate around the optimal one, which means the SINR fairness
can be achieved in an asymptotic sense using low complexity algo-
rithm. These two figures demonstrate the empirical results; proving
the joint convergence property as well as the asymptotic optimality
using Algorithm B are interesting directions for future work.
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