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ABSTRACT
We propose an adaptive quantization algorithm for subspace
tracking on the Grassmann-manifold of p-dimensional sub-
spaces in the n-dimensional Euclidean space. This quan-
tization problem arises naturally in limited feedback based
wireless communication systems, which apply precoding for
interference cancellation and alignment. The proposed algo-
rithm exploits the differential geometry associated with the
Grassmann-manifold for efficient differential and predictive
quantization. The algorithm is applied to channel state in-
formation quantization in a multi-user block-diagonalization
based wireless communication system, demonstrating large
throughput gains compared to memoryless quantization.

Index Terms— Grassmann-manifold, differential quanti-
zation, limited feedback, block diagonalization, LTE.

1. INTRODUCTION

Channel state information (CSI) is useful for achieving the
highest performance in multiple antenna wireless communica-
tions. Single user (SU-) MIMO systems employ CSI to match
the spatial signature of the transmit signal to the channel and
separate the multiplexed streams at the receiver [1]. In multi-
user (MU-) MIMO broadcast systems, CSI is employed to send
independent data streams to multiple users simultaneously [2].
In interference channels, CSI allows multiple interfering user
pairs to communicate with less interference [3, 4]. In general,
obtaining the gains from multiple antennas requires accurate
channel knowledge at both, the transmitter and the receiver.

Obtaining CSI at the transmitter (CSIT) is made practical
through the existence of dedicated finite-rate feedback links
from the users. Prior work has thus focused on the design of
limited feedback algorithms for efficient CSI quantization [5].
Accurate CSIT is central in interference limited multi-user
systems, because CSI imperfections increase the multi-user
interference and strongly deteriorate the throughput. It has
been shown that a linear increase in the number of feedback
bits with the signal to noise ratio (SNR) (in [dB]) is required
to maintain a constant rate-gap to perfect CSIT [6–9]. Several
multi-user precoding techniques require knowledge about the
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linear vector spaces spanned by the channel matrices to cal-
culate the precoders [7, 8]. These spaces can be represented
as points on a Grassmann-manifold. Grassmannian quanti-
zation has thus gained significant interest in CSI feedback,
e.g., [10]. To reduce the CSI feedback overhead, the temporal
correlation of the channel between consecutive quantization
instants can be exploited. Several authors have considered
differential and predictive quantization of one dimensional
subspaces, e.g., [11–14], but the literature on quantizers for
higher dimensional subspaces in the context of MU-MIMO is
limited, e.g., [15]. In [16, 17], we proposed a predictive quan-
tizer for the Grassmann manifold, but that work was limited to
one dimensional subspaces.

In this paper, we propose a predictive quantization algo-
rithm for tracking of channel subspaces of arbitrary dimen-
sion. The algorithm exploits the differential geometry asso-
ciated with the Grassmann-manifold for efficient prediction
and quantization. We investigate the accuracy of the pro-
posed algorithm in terms of the chordal distance quantization
error. The quantizer is applied for CSI feedback in a block-
diagonalization (BD)-based MU-MIMO system, demonstrat-
ing close to optimal performance in a low-mobility scenario
over a wide SNR range.

2. BLOCK-DIAGONALIZATION

Consider a frequency flat MU-MIMO broadcast system with
input-output relationship of user u at time instant k given by

yu[k] = Hu[k]
Hxu[k] + Hu[k]

H
U∑

`=1, 6̀=u

x`[k] + nu[k], (1)

where yu[k] ∈ CNr denotes the received symbol vector of user
u, Hu[k] ∈ CNt×Nr is its channel matrix, and (·)H denotes
conjugate-transposition. To simplify notation, we suppose
that all U users have the same number Nr of receive antennas
and that Nr ≤ Nt. The transmit symbol vector xu[k] ∈
CNt intended for user u is obtained by linearly precoding
the information symbol vector su[k] ∈ Cdu with a precoding
matrix Fu[k] ∈ CNt×du

xu[k] = Fu[k]su[k], (2)

with du being the number of parallel data streams of user u.

5021978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



BD precoding targets zero multi-user interference. This is
achieved by choosing the precoder Fu[k] in the null-space of
the other users’ channels [18]

Fu[k] ∈ null
(
Hu[k]

)
, (3)

Hu[k]=[H1[k], . . . ,Hu−1[k],Hu+1[k], . . . ,HU [k]]
H
. (4)

Several conditions on the number of streams du per user and
the total number of streams must be satisfied to guarantee the
existence of a valid solution; see [18]. Consider the compact
singular value decomposition (SVD) of the channel

H`[k] = U`[k]Σ`[k]V`[k]
H = H̃`[k]D`[k], (5)

H̃`[k] =U`[k]∈CNt×Nr, D`[k] =Σ`[k]V`[k]
H∈CNr×Nr .

To calculate the null-space of Hu[k] it is sufficient to know
the semi-unitary matrices H̃`[k],∀` 6= u, because

null
(
H`[k]

H
)
=null

(
H̃`[k]

H
)
, (6)

null
(
Hu[k]

)
=
⋂
` 6=u

null
(
H`[k]

H
)
. (7)

Also, null
(
H̃`[k]

H
)
= null

(
(H̃`[k]Q)H

)
for any unitary Q.

Hence, knowledge of the space spanned by the columns of
H`[k],∀` is sufficient for the calculation of the BD precoders.

3. ADAPTIVE QUANTIZATION ALGORITHM

In this paper, we consider adaptive quantization to take ad-
vantage of the temporal correlation in the channel to provide
higher resolution compared to memoryless techniques [7]. We
propose that each user u quantizes and feeds back the unitary
matrix H̃u[k] defined in (5). The space spanned by H̃u[k] can
be interpreted as point on the Grassmann-manifold GNt,Nr(C)
of all Nr-dimensional subspaces in the Nt-dimensional com-
plex Euclidean space [19, 20]. In our approach, a Grassman-
nian quantization codebook is adapted to the temporal evolu-
tion of the channel subspace.

To derive an efficient quantization codebook, we consider a
general model for the temporal evolution of the channel matrix

Hu[k] = D (Hu[k − 1],Hu[k − 2], . . .) + Ju[k], (8)

where D (Hu[k − 1],Hu[k − 2], . . .) describes the determin-
istic dependence of the current channel on the past, and the ma-
trix Ju[k] : vec(Ju[k]) ∼ N

(
0, σ2

j [k]I
)

denotes zero-mean
complex Gaussian innovation noise. We do not make any
specific assumptions about the nature of the deterministic func-
tion D(·), because the behavior of wireless channels can vary
strongly with the surrounding environment [21]. We propose
a predictive quantizer that predicts the deterministic evolution
of the channel and quantizes the prediction error. Assuming
that a prediction H

(p)
u [k] is available, we write the channel as

Hu[k] = H(p)
u [k] + E(p)

u [k] + Ju[k] = H(p)
u [k] + Eu[k], (9)

with E
(p)
u [k] denoting the prediction error. We assume that

E
(p)
u [k] is independent of the innovation Ju[k] and contains

i.i.d. zero-mean Gaussian elements of variance σ2
p[k]. Hence,

the total error matrix Eu[k] is distributed as: vec(Eu[k]) ∼
N
(
0, σ2

e [k]I
)
, with σ2

e [k] = σ2
p[k] + σ2

j [k]. Using the de-
composition of (5) and applying a similar decomposition to
H

(p)
u [k], we rewrite the channel as

H̃u[k]Du[k] = H̃(p)
u [k]D(p)

u [k] + Eu[k], (10)

→ H̃u[k] =
(
H̃(p)

u [k]D(p)
u [k] + Eu[k]

)
Du[k]

−1. (11)

The differential geometry associated with the Grassmann-
manifold allows to describe the error between H̃

(p)
u [k] and the

observed subspace H̃u[k] by means of a tangent matrix [22]

H(t)
u [k] =

(
I−H̃(p)

u [k]H̃(p)
u [k]H

)
H̃u[k]

(
H̃(p)

u [k]HH̃u[k]
)−1

=Pu[k]H̃u[k]
(
H̃(p)

u [k]HH̃u[k]
)−1
= T

(
H̃(p)

u [k], H̃u[k]
)
. (12)

With knowledge of H̃
(p)
u [k] and H

(t)
u [k], the space spanned by

H̃u[k] is obtained from the geodesic G(H̃(p)
u [k],H

(t)
u [k]); see

[22, Eq. (4)]. Thus, an efficient Grassmannian codebook can be
obtained from knowledge of the statistics of the tangent matrix.
With (10) and (11) the tangent (12) can be reformulated as

H(t)
u [k] = Pu[k]Eu[k]

(
H̃(p)

u [k]HHu[k]
)−1

. (13)

Applying an SVD to H̃
(p)
u [k]HHu[k] = Qu[k]Λu[k]Wu[k]

H,
(13) can be written as

H(t)
u [k] = Pu[k]Eu[k]

(
Wu[k]Λu[k]

−1Qu[k]
H
)
. (14)

The tangent matrix is thus obtained as the product of the null-
space component of the error matrix with respect to the predic-
tion, Pu[k]Eu[k], and a term that depends on the range-space
component of the error. Assuming the range-space component
as fixed/observed, the distribution of the tangent is given by

vec(H(t)
u [k]) ∼ N

(
0,C(t)

u [k]
)
, (15)

C(t)
u [k] = σ2

e [k]
(
Qu[k]Λu[k]

−2Qu[k]
H ⊗Pu[k]

)
. (16)

The range-space component of the error impacts the matrix
Λu[k], and leads to a correlation of the elements of the tangent
matrix. If Λu[k] were known a-priori, it could be used to
generate a matching correlated codebook. Unfortunately, it de-
pends on the current channel and is unknown to the transmitter.
Thus, we cannot exploit this correlation during quantization,
but approximate Λu[k] with a scaled identity matrix (simula-
tions verified this approximation for small prediction errors)

C(t)
u [k] ≈

(
σe[k]

λu[k]

)2

(I⊗Pu[k]) . (17)

With this approximation, the tangent matrix is obtained as the
projection of an i.i.d. Gaussian matrix onto the null-space of
the predicted subspace. We observe that a prediction of the
subspace is sufficient for the calculation of the tangent matrix.
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Based on these observations, we customize our codebook
construction from [16, 17] for GNt,Nr . At each quantization
instant k the following calculations are performed:
1. Predict the current channel subspace H̃

(p)
u [k] and calculate

the projection matrix Pu[k].
2. Generate a tangent codebook

Q(t)
u [k] =

{
Pu[k]Oi|Oi ∈ CNt×Nr

}
, (18)

vec(Oi) ∼ N
(
0, gs[k] I

)
. (19)

3. Calculate the Grassmannian codebook Qu[k], by project-
ing the tangent codebook onto the manifold using the
geodesic [22, Eq. (4)], with H̃

(p)
u [k] as starting point.

The scale parameter s[k] in (19) tracks the time dependent
variance of the tangent matrix, (σe[k]/λu[k])2, employing the
same 1 bit tracking algorithm as in [16, 17].

The quantized channel subspace is obtained by minimizing
the chordal distance quantization error

H̃(q)
u [k] = argmin

Qi∈Qu[k]

Nr − tr
(
H̃u[k]

HQiQ
H
i H̃u[k]

)
. (20)

4. PREDICTION ALGORITHM
In our previous work [16, 17], we use adaptive finite impulse
response (FIR) filters for prediction on GNt,1. The large num-
ber of filter coefficients involved with prediction of unitary
matrices on GNt,Nr

, and the corresponding slow convergence
speed, forced us to take an alternative approach. We hence
extend the work [23] from GNt,1 to GNt,Nr

.
The basic idea of [23] is to apply a linear least squares fit

to Np past observed tangent matrices and, based on this fit,
predict the current channel subspace that is to be quantized.
The first step of the algorithm involves finding a center in
GNt,Nr

of the Np past quantized subspaces

Hu =
{
H̃(q)

u [k − 1], . . . , H̃(q)
u [k −Np]

}
. (21)

This is achieved with the iterative algorithm detailed in [23,
Fig. 2], which can be generalized to GNt,Nr by replacing the
tangent and geodesic mappings with Eq. (12) and [22, Eq. (4)],
respectively. We denote the obtained center as H̃

(c)
u . Next,

the tangent matrices from H̃
(c)
u to the elements of Hu are

calculated (for brevity we assume Np to be odd)

Tu[i] = T
(
H̃(c)

u , H̃(q)
u [k − dNp/2e+ i]

)
, (22)

i ∈ I =
{
− bNp/2c , . . . , bNp/2c

}
.

The time dependence of the tangents is then estimated by
fitting a polynomial model. In [23], a linear model for tangents
to GNt,1 was considered, which we extend to a second-order
model for tangents to GNt,Nr . An extension to higher-order
models did not provide an additional gain in the simulations.
The estimated tangents are then obtained from the equation

T̂u[i] = T(1) i+ T(2) i2. (23)

The optimal coefficient matrices T
(1)
u and T

(2)
u for (23) are
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Fig. 1: Quantization error versus maximum channel Doppler frequency for an
Nt ×Nr = 8× 4 system with different quantization codebook sizes.

obtained by minimizing the mean squared error (MSE)1{
T(1)

u ,T(2)
u

}
= argmin

T(1),T(2)

∑
i∈I

∥∥∥Tu[i]− T̂u[i]
∥∥∥2
F
. (24)

The rational behind this choice of an objective function comes
from a local approximation of manifold geodesic distances
with tangent Frobenius norms; see [23]. Solving this opti-
mization problem leads to the optimal coefficient matrices

T(1)
u =

∑
i∈I Tu[i] i∑

i∈I i
2

, T(2)
u =

∑
i∈I Tu[i] i

2∑
i∈I i

4
. (25)

Note that this solution is only valid for odd Np, for even Np

additional terms appear. Based on this fit, the tangent to the
current channel subspace H̃u[k] is predicted as

T (H̃(c)
u , H̃u[k]) ≈ T̂u[i+ 1]. (26)

The predicted channel subspace H̃
(p)
u [k] is finally obtained

from the geodesic

H̃(p)
u [k] = G(H̃(c)

u , T̂u[i+ 1]). (27)

5. SIMULATION RESULTS
5.1. Quantization Error
In this section we investigate the quantization accuracy of our
algorithm in terms of the chordal distance MSE. In [7–9] it
has been shown that this error is directly related to the rate loss
of the limited feedback system compared to perfect CSIT.

We consider the quantization MSE as a function of the
channel Doppler frequency fd. The temporal correlation of
the channel matrix is determined by the Doppler frequency ac-
cording to Clarke’s model [24]. Realistic channel realizations
are generated with the sum-of-sinusoids channel model of [25].
The MSE is approximated by Monte-Carlo simulations. The
normalized Doppler frequency is defined as νd = Tsfd, with
Ts being the sampling rate.

1In general it is necessary to constrain T
(1)
u and T

(2)
u to the tangent space

of H̃(c)
u . Here, the MSE metric automatically assures a valid solution.
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Fig. 2: Throughput of an Nt ×Nr = 4× 2 BD system using the proposed
quantizer, the quantizer of [29] and perfect CSIT, compared to SU-MIMO.

In Fig. 1 we plot the MSE of an Nt × Nr = 8 × 4 sys-
tem for four different quantization approaches. The mem-
oryless quantizer employs random isotropically distributed
unitary matrices for quantization [7]. The differential quan-
tizer refers to the proposed algorithm using a trivial predictor
H̃

(p)
u [k] = H̃

(q)
u [k − 1]. The predictive quantizer employs the

proposed predictor using a linear fit and a quadratic fit for the
tangents. The feedback rate is 7, 9 and 11 bits per quantization
instant. The figure shows that the predictive quantizers achieve
a larger slope of the MSE curve versus Doppler frequency as
the differential quantizer. At large Doppler frequencies, i.e.,
for small channel correlation, the performance of the proposed
quantizers reduces to that of memoryless quantization.

5.2. Block-Diagonalization Throughput
We apply the proposed quantizer for CSI feedback in a BD-
based MU-MIMO system. The results are obtained with a
3GPP LTE-A compliant link-level simulator [26, 27]. We
consider anNt×Nr = 4×2 and 8×2 system, serving two re-
spectively four users in parallel, with two streams per user. The
base station calculates the BD precoders based on quantized
channel knowledge. The users apply the interference-averaged
MMSE receivers of [28]. A 1.4 MHz frequency-flat system is
simulated with a normalized Doppler frequency of νd = 10−2.

In the first simulation, we consider an autoregressive chan-
nel model of order one, according to [29]. Channel predic-
tion is not effective for such a channel model [13], hence
we consider differential quantization. For BD, an alterna-
tive limited feedback approach to subspace quantization is
to quantize the channel Gram matrix. In [29], a differential
quantizer for channel Gram matrices was proposed, which
we compare to our quantizer in Fig. 2. The codebook size
of [29] is limited to ≤ 2N2

t , but it can be furhter increased by
considering non-orthogonal geodesics in the codebook con-
struction of [29]. We observe that this quantizer (denoted as
Gram) achieves the same performance as our proposal (de-
noted as adaptive channel subspace quantization (ACSQ)) as
long as the codebook size is ≤ 2N2

t . With the considered
codebook size-extension, the Gram 8 bit algorithm is slightly
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Fig. 3: Throughput of an Nt ×Nr = 8× 2 BD system using the proposed
quantizer and perfect CSIT, compared to SU-MIMO.

less efficient than ACSQ 8 bit. We also plot the performance
of BD with memoryless quantization (RSQ) and SU-MIMO
in Fig. 2. Memoryless quantization performs significantly
worse than differential quantization at the considered Doppler
frequency, in conformance to Section 5.1. At low to moderate
SNR, SU-MIMO (based on the LTE codebook) outperforms
MU-MIMO. This is because we do not consider scheduling
for MU-MIMO, but always serve two users over two streams.
At high SNR, MU-MIMO achieves a larger multiplexing gain
than SU-MIMO, provided the CSIT is sufficiently accurate.

In our second simulation, we consider the channel model
of [25] which is based on Clarke’s model. In this case, channel
prediction is effective and employed with our quantizer. We
were not able to achieve a performance gain compared to
memoryless quantization with the differential quantizer of [29]
for this channel model and Nt×Nr = 8×2 (a small gain was
observed for Nt×Nr = 4×2), hence it is not shown in Fig. 3.
With our predictive algorithm we achieve similar behavior as
in the previous simulation. If the quantization codebook size
is less than 6 bits, SU-MIMO outperforms MU-MIMO over
the entire SNR range at the considered Doppler frequency, due
to the residual multi-user interference. Hence, it is necessary
to either increase the codebook size or temporal feedback rate,
or to reduce the number of users served in parallel.

6. CONCLUSION
We derive an efficient predictive subspace quantization algo-
rithm, by exploiting the differential geometry associated with
the Grassmann-manifold. We show that the tangent matrix,
describing the error between the predicted subspace and the
observation, is approximately i.i.d. Gaussian distributed in the
null-space of the predicted subspace. Based on these results,
we propose a Grassmannian quantization codebook construc-
tion. We investigate the quantization MSE of the proposed
algorithm, demonstrating large gains in accuracy compared
to memoryless quantization if the channel correlation is suf-
ficiently large. The algorithm is applied to CSI quantization
in a BD-based MU-MIMO system, where we obtain large
throughput gains compared to memoryless quantization.
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