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ABSTRACT

Adaptation of the coefficients of an equalizer usually takes place in
the decision directed mode. The decision used for adaptation has a
profound influence on the performance of the equalizer. In this work,
we consider the influence of the probabilistic model used by a soft
information decision device on the performance of the equalizer. It is
shown that the equalizer output is distributed as a Gaussian Mixture,
and these statistics are used to form a soft-decision device. We show
that this is very near optimal in the sense of the Recursive Expected
Least Squares algorithm introduced in prior work. Sub-optimal de-
cision devices that are often more practical are also introduced and
the loss of performance as a result of using these is considered.

Index Terms— Equalizers, adaptive signal processing, adaptive
equalizers, time-varying channels

1. INTRODUCTION AND REVIEW

Adaptive equalizers are one of the key components of communica-
tion systems for time-varying channels. A number of algorithms
may be used to adapt the coefficients of an equalizer- typical exam-
ples include the LMS and RLS algorithms [1]. However, adaptation
algorithms typically require knowledge of the transmitted symbols
in order to operate reliably. Thus, in practice, equalizers operate in
the hard-decision directed mode after an initial training period.

Prior work [2] and experience have shown that hard-decision
directed equalizers perform poorly, especially at lower SNRs or with
rapidly varying channels. Therefore, other approaches have been
sought. In particular, various soft-decision devices were designed
in [3–7] among others. These techniques utilize algorithms such
as the constant modulus algorithm, or heuristically designed soft-
decision devices.

In [8], an algorithm was derived for adaptation that was shown
to be optimal in an EM sense. This algorithm, termed the Recursive
Expected Least Squares (RELS) algorithm, essentially involves re-
placing the hard decision in the RLS algorithm with a soft decision
that depends on the statistics of the output of the equalizer.

The equalizer output statistics used to form the decision device
in [8] were chosen for simplicity of implementation and to develop
connections to the blind equalization techniques of [3] and [5]. In
this work, we consider a soft decision which reflects the actual statis-
tics of the equalizer output, and suboptimal approximations to this.
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We compare and contrast the performances of the adaptation process
when driven by these different decisions.

The output statistics of the equalizer are useful in a variety
of other contexts. For instance, in [9] the statistics (approximated
by Gaussians) are used in Bit-Interleaved Coded Modulation for
CDMA. Output statistics are also used in computing symbol proba-
bilities in turbo equalization, and Gaussian distributed statistics are
often assumed for this purpose [10]. Hence it is useful in such appli-
cations to see how much is lost by such Gaussianity approximations.
In this work, we consider the effect on adaptation, but it may also
provide insights into what might be expected in other scenarios.

Notation: Boldface lowercase math symbols (e.g., x) are vec-
tors and boldface uppercase math symbols (e.g., X) are matrices.
† is Hermitian of a matrix or vector, T is transpose and ∗ is com-
plex conjugation. p(x | y = y0; z) is the probability distribution
of x, conditioned on y = y0, and parametrized by z. CN (µ,Σ)
represents the PDF of a circularly symmetric complex normal distri-
bution.

2. SYSTEM MODEL

A block diagram of the system is shown in Figure 1. The trans-
mitted signals s(n) are drawn independently and uniformly from a
finite, zero-mean, unit-variance constellation S. They are passed
through a causal, finite ISI channel h, which may be time varying in
general. The channel outputs are corrupted by additive noise υ(n)
and passed to a serial-parallel converter. The converter also receives
the past transmitted symbols and produces the overall input vector
to the equalizer, denoted u(n), of length N . The past symbols are
included inu(n) to account for the possibility that the equalizer may
be a DFE. It is assumed that the feedback filter receives the correct
transmitted symbols. The effect of errors in the feedback filter has
been investigated in, for instance [11–13].

The equalizer filter is denoted g(n|n− 1), which represents the
coefficients used to filter the input at time n, computed given all
the data upto time n − 1 [14] . Define P as the total number of
transmitted symbols on which the equalizer input depends, and let

sP (n) =
[
s(n), . . . , s(n− (P − 1))

]T (1)

Then the overall input to the equalizer at time n may be written
as:

u(n) =H†sP (n) + υ(n) (2)
whereH is the P×N channel transfer matrix, which may vary with
time in general. In this work, we will assume thatH is fixed, but the
equalizer does not have this information. Finally, υ(n) is assumed
to be distributed as CN (0,S).
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Fig. 1. System Model: Block Diagram

2.1. Adaptation

The RLS algorithm [1] is used as a starting point. With k(n) defined
as the Kalman gain vector (which can be computed from the data),
the RLS algorithm updates the coefficient vector by the following
equation:

g(n+1|n) = g(n|n−1)+k(n)(d(n)−g†(n|n−1)u(n))∗ (3)

d(n) is the so-called desired symbol that drives adaptation, i.e.,
what y(n) should have been. Optimally, therefore, d(n) = s(n).
The equalizer is said to be in “training mode” when s(n) is known.
Typically, however, s(n) is unknown, and the decision device of Fig-
ure 1 computes a value for d(n) from y(n). We say then that the
adaptation is decision directed.

The decision device that is most commonly used is the hard-
decision device:

d(n) = argmin
s∈S

|s− y(n)|2 (4)

When d(n) is given by (4), the adaptation is said to be hard-decision
directed.

In [8], an improved algorithm for adaptation in decision directed
mode was derived, termed the Recursive Expected Least Squares al-
gorithm. The RELS update step is (3), with d(n) given by:

d(n) = E[s(n) | y(n), . . . , y(1) ; g(n|n− 1)] (5a)

=

∑
s(n)∈S

s(n)p(y(n) | y(n− 1), s(n) ; g(n|n− 1))

∑
s(n)∈S

p(y(n) | y(n− 1), s(n) ; g(n|n− 1))
(5b)

where y(n − 1) =
[
y(n− 1), . . . , y(1)

]
and to obtain (5b) from

(5a) we use the fact that symbols are equiprobable (extensions to
non-equiprobable cases are considered in [12] in the context of turbo
equalization). It is necessary to choose a suitable model for p(y(n) |
y(n−1), s(n) ; g(n|n−1)). There are several considerations here.

2.1.1. Choosing a Model

Knowing y(n − 1) provides some information about the past sym-
bols s(n − 1), . . . , s(1), and hence y(n). But y(n − 1) ∈ Cn−1,
so the size of the conditional distribution is large, and grows with
time. It is thus infeasible to work with this distribution- hence, we
approximate p(y(n) | y(n − 1), s(n) ; g(n|n − 1) by p(y(n) |
s(n) ; g(n|n− 1)).

With this assumption, in [8], the model chosen was y(n) ∼
CN (s(n), σ2), where σ, in general, depends on g(n|n − 1). If it
were further assumed that the statistics are stationary, σ would be
fixed, and can thus be estimated during a training period. In prac-
tice, we can choose the model as though the statistics are stationary
and then track the parameters in the cases where we expect non-
stationarity.

However, the true statistics of the equalizer output are not Gaus-
sian. In the next section, we derive an expression for the output

statistics, which will lead to a soft-decision device. We continue to
assume that the statistics of y(n) are stationary given s(n), with the
understanding that we can just track the relevant model parameters
when they are not (which parameters need to be tracked, of course,
depends on the model).

3. STATISTICS OF EQUALIZER OUTPUT

To derive the expression for p(y(n) | s(n) ; g(n|n − 1)), let g ≡
g(n|n− 1) and observe, for any s0 ∈ S:

p(y(n) | s(n) = s0 ; g)

=
∑

s∈SP−1

p(s)p
(
y(n)

∣∣∣∣ sP (n) =
[
s0

s

]
; g

)

=
1

|S| P−1

∑

s∈SP−1

p
(
y(n)

∣∣∣∣ sP (n) =
[
s0

s

]
; g

)
(6)

As υ(n) ∼ CN (0,S), conditioned on sP (n), we have:

p
(
u(n)

∣∣∣∣ sP (n) =
[
s0

s

])
= CN

(
H†

[
s0

s

]
,S

)
(7)

As linear combinations of complex Gaussians are complex
Gaussian variables, and y(n) = g†(n|n− 1)u(n), we have:

p
(
y(n)

∣∣∣∣ sP (n) =
[
s0

s

]
; g

)
= CN

(
g†H†

[
s0

s

]
, g†Sg

)

(8)
Using (8) in (6), we have the output statistics of the equalizer,

given by:

p(y(n) | s(n) = s0 ; g)

=
1

|S| P−1

∑

s∈SP−1

CN
(
g†H†

[
s0

s

]
, g†Sg

)
(9)

This is an exact expression for the output statistics. We consider
an approximation to these statistics given by the “best-fit” Gaussian,
i.e., the Gaussian with the mean and variance of the distribution of
(9). These are given by:

E[y(n) | s(n) = s0 ; g] = g†H†
[

s0

0(P−1)×1

]
(10a)

var(y(n) | s(n) = s0 ; g)

= g†
(
S +H†

[
0 01×(P−1)

0(P−1)×1 IP−1

]
H

)
g (10b)

Observe from (10a) that the assumption used in the model of
[8], that the mean of y(n) conditioned on s(n) = s0 is s0 is sub-
optimal. It is easy to show that, with high probability, the mean has a
smaller magnitude than the symbol and tends to s0 as the SNR goes
to infinity. We do not include this proof for reasons of space.

In order to validate these statistics, consider an equalizer in the
training mode (for a fixed channel). It is known [1] that in the steady
state, the mean of the coefficient vector is the L-MMSE coefficient
vector g0, and that the variance of the coefficient vector about its
mean is small. Thus, in (9) and (10) we set g = g0. For an equalizer
with BPSK signaling, Figure 2 shows the simulated distribution (nor-
malized histogram) of the output y(n) corresponding to s(n) = 1
and the derived models.
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Fig. 2. Distributions of Equalizer Output in Training Mode, Validat-
ing the Output Statistics of the Equalizer

Evidently, the Gaussian Mixture distribution of (9) is nearly ex-
act, even using g = g0. This indicates, even in practice, that the
“stationary output” assumption may be sufficient. We will demon-
strate this again using simulation. In practice, of course, if we made
the stationary statistics assumption, rather than assume that g = g0,
we would estimate the parameters during a training period. In this
work, ML parameter estimation is employed for means and vari-
ances of Gaussian and the means and variances of the components
in Gaussian Mixtures.

Further, the Gaussian distribution is a reasonable approximation
to the mixture distribution. Thus, we can use these 2 output distri-
butions (with the stationary statistics assumption or with parameter
tracking) to form improved decision devices.

3.1. Soft-Decision Devices Using Output Statistics

The derivation above gives us 2 choices of the decision function to
use in adaptation, corresponding to the 2 models (the exact Gaussian
Mixture distribution and the “best-fit” Gaussian distribution) for the
equalizer output. We now consider the decision functions that arise
as a result of using these models in (5b). It seems evident that the
best, or optimal soft-decision directed device would be the one that
uses the exact output statistics- i.e., the Gaussian Mixture model.

Consider a BPSK system with a fixed channel. Suppose the
equalizer has been run in training mode for sufficiently long, so that
the coefficient vector is in a steady state. Then the equalizer co-
efficient vector can be approximated by the L-MMSE coefficients
g0. At this point, we switch into decision directed mode. Figure
3 demonstrates the operation of the decision devices for the hard-
decision directed device and the soft decision devices using the best-
fit Gaussian represented by (10) and the Gaussian Mixture model of
(9) at this time. The Gaussian model of 2.1.1 is not included because
for this channel and equalizer, this model and the best fit Gaussian
model lead to nearly identical decision devices, and seeing the dif-
ference is hard. Also included on the same plot is the innovation,
d(n) − y(n), which represents the amount of change in the coeffi-
cient vector.

From Figure 3 it is clear why the RELS algorithm with the
various models would perform better than hard-decision directed
adaptation- the innovation when y(n) is near 0 is small, which is
logical, as such values correspond to the largest probability of error.
Moreover, it should be noted that while the Gaussian Mixture distri-
bution has a smaller innovation (as compared to the best-fit Gaussian
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Fig. 3. Decision Devices and Corresponding Innovations for Various
Models Considered

Channel Impulse Response FF FB
Length Length

A
[
0.81, 0.42, 0.42

]
2 2

B
[
0.69, 0.46, 0.46, 0.23, 0.23

]
3 2

C [0.72,−0.5, 0.36, 0.21, 0.21
0.07, 0.05, 0.03, 0.04, 0.07]

10 5

Table 1. Impulse Responses of Channel and Parameters of Equalizer

distribution) when y(n) is small, and a larger one when it is close to
1, the difference between the decision functions is not huge, at least
for this channel/equalizer.

4. SIMULATION RESULTS

We now compare the performance of decision-directed equalizers
using the different decision devices introduced. The channels used
are drawn from [13], specifically, Figure 10-2-5 of the book, and are
summarized in Table 1.

Figure 4a shows the performances of the soft-decision devices
using the Gaussian Mixture of (9) and the best-fit Gaussian with the
parameters of (10), with g = g0 in both cases. The results show
that the Gaussian Mixture distribution is indeed better, as expected
than the Best-Fit Gaussian. Moreover, comparing with the training
mode performance provides a justification for the stationary output
statistics assumption, even in practice. Hence, the fact that assuming
the statistics are stationary makes the system simple (as it elimates
the need for parameter tracking) and seems to perform reasonably
well.

The results for the same system, but with the parameters esti-
mated during training, are shown in Figure 4b. In this figure we
also consider the soft-decision directed device of [8], which uses the
Gaussian distribution with means at symbols. It should be noted
that all the soft-decision directed adaptation schemes outperform the
hard-decision directed adaptation. Further the Best-Fit Gaussian (in
which both the mean and variance are estimated) and the Gaussian
Mixture model perform almost equally well, and their lines cannot
be distinguished in the figure. The Gaussian with assumed means
at symbols performs slightly worse that these at low SNRs, but their
performance converges at high SNRs.
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adaptation- the innovation when y(n) is near 0 is small, which is
logical, as such values correspond to the largest probability of error.
Moreover, it should be noted that while the Gaussian Mixture distri-
bution has a smaller innovation (as compared to the best-fit Gaussian
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Channel Impulse Response FF FB
Length Length

A
[
0.81, 0.42, 0.42

]
2 2

B
[
0.69, 0.46, 0.46, 0.23, 0.23

]
3 2

C [0.72,−0.5, 0.36, 0.21, 0.21
0.07, 0.05, 0.03, 0.04, 0.07]

10 5

Table 1. Impulse Responses of Channel and Parameters of Equalizer

distribution) when y(n) is small, and a larger one when it is close to
1, the difference between the decision functions is not huge, at least
for this channel/equalizer.

4. SIMULATION RESULTS

We now compare the performance of decision-directed equalizers
using the different decision devices introduced. The channels used
are drawn from [13], specifically, Figure 10-2-5 of the book, and are
summarized in Table 1.

Figure 4a shows the performances of the soft-decision devices
using the Gaussian Mixture of (9) and the best-fit Gaussian with the
parameters of (10), with g = g0 in both cases. The results show
that the Gaussian Mixture distribution is indeed better, as expected
than the Best-Fit Gaussian. Moreover, comparing with the training
mode performance provides a justification for the stationary output
statistics assumption, even in practice. Hence, the fact that assuming
the statistics are stationary makes the system simple (as it elimates
the need for parameter tracking) and seems to perform reasonably
well.

The results for the same system, but with the parameters esti-
mated during training, are shown in Figure 4b. In this figure we
also consider the soft-decision directed device of [8], which uses the
Gaussian distribution with means at symbols. It should be noted
that all the soft-decision directed adaptation schemes outperform the
hard-decision directed adaptation. Further the Best-Fit Gaussian (in
which both the mean and variance are estimated) and the Gaussian
Mixture model perform almost equally well, and their lines cannot
be distinguished in the figure. The Gaussian with assumed means
at symbols performs slightly worse that these at low SNRs, but their
performance converges at high SNRs.

Fig. 3. Decision Devices and Corresponding Innovations for Various
Models Considered

1, the difference between the decision functions is not huge, at least
for this channel/equalizer.

4. SIMULATION RESULTS

We now compare the performance of decision-directed equalizers
using the different decision devices introduced. The channels used
are drawn from [15], specifically, Figure 10-2-5 of the book, and are
summarized in Table 1.

Figure 4a shows the performances of the soft-decision devices
using the Gaussian Mixture of (9) and the best-fit Gaussian with the
parameters of (10), with g = g0 in both cases. The results show
that the Gaussian Mixture distribution is indeed better, as expected
than the Best-Fit Gaussian. Moreover, comparing with the training
mode performance provides a justification for the stationary output
statistics assumption, even in practice. Hence, the fact that assuming
the statistics are stationary makes the system simple (as it elimates
the need for parameter tracking) and seems to perform reasonably
well.

The results for the same system, but with the parameters es-
timated during training (when we say “estimated parameters” we
mean the parameters of the distribution are estimated, as discussed
previously), are shown in Figure 4b. In this figure we also consider
the soft-decision directed device of [8], which uses the Gaussian dis-
tribution with means at symbols. It should be noted that all the soft-
decision directed adaptation schemes outperform the hard-decision
directed adaptation. Further the Best-Fit Gaussian (in which both the
mean and variance are estimated) and the Gaussian Mixture model
perform almost equally well, and their lines cannot be distinguished
in the figure. The Gaussian with assumed means at symbols per-
forms slightly worse that these at low SNRs, but their performance
converges at high SNRs.

System B shows similar trends, in general. The performances of
the Gaussian Mixture and Best-Fit Gaussian based soft-decision di-
rected equalizers is better than the one that uses Gaussian decisions
with means at symbols. However, at low SNRs in this case we see
that the Best-Fit Gaussian, which is an approximation to the Gaus-
sian Mixture, actually outperforms the latter, contradicting Figure
4a!

The reason is that, the more components there are in the mix-
ture (|S|P−1), the more data is needed to estimate the parameters.
Moreover, the lower the SNR, the more data is needed to get reliable
estimates (intuitively, more noise needs to be averaged out). The
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Fig. 4. System A- Performance with Various Adaptation Schemes
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Fig. 5. System B- Performance with Various Adaptation Schemes,
Estimated Parameters

System B shows similar trends, in general. The performances of
the Gaussian Mixture and Best-Fit Gaussian based soft-decision di-
rected equalizers is better than the one that uses Gaussian decisions
with means at symbols. However, at low SNRs in this case we see
that the Best-Fit Gaussian, which is an approximation to the Gaus-
sian Mixture, actually outperforms the latter, contradicting Figure
4a!

The reason is that, the more components there are in the mix-
ture (|S|P−1), the more data is needed to estimate the parameters.
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Fig. 6. System Cs- Performance with Gaussian Approximations-
Best-Fit and Means at Symbols

Moreover, the lower the SNR, the more data is needed to get reliable
estimates (intuitively, more noise needs to be averaged out). The
performance of the soft-decision directed adaptation with the Gaus-
sian Mixture model depends on the accuracy of the model. Thus,
the inaccurate exact model does not do as well as the approximate
model.

Finally, for the much longer System C, it is impractical to fit a
Gaussian Mixture distribution, due to the computational complexity
of finding the parameters. With time-varying channels, and when
the channel length is unknown, this problem is even harder. The 2
different Gaussian approximations, which are practical, perform as
before- the high SNR performance is nearly identical, and at low
SNRs the Best-Fit procedure, which estimates the means, does bet-
ter. However, the Best-Fit procedure requires the estimation of 2
parameters during training, and thus, requires more data to get accu-
rate estimates. This might become an issue in non-stationary envi-
ronments, or if not much training data can be used.

5. CONCLUSIONS

The effect of the statistical model used by the decision device on
the performance of adaptation algorithms was examined. The opti-
mal decision device would depend on the distribution of the equal-
izer output, which is a Gaussian Mixture. The Best-Fit Gaussian
statistics for the output statistics was derived. We then showed how
the decision devices that use these models behave, and compared
the performance of these, versus the hard-decision directed equal-
izer and the soft decision device of [8] that uses a Gaussian with
means at symbols as the model.

While the Gaussian Mixture does better, it does not have a sig-
nificant advantage over the Best-Fit Gaussian in practice. Further,
estimating the parameters of the mixture is complicated, and may
not even be possible with time-varying systems. Thus, the Best-Fit
Gaussian does acceptably well in terms of both complexity and per-
formance. The Gaussian with the “means at symbols” assumption is
reasonable at high SNRs.

However, all of the work herein with practical systems assumed
stationary output statistics. Performance could be improved by
tracking the model parameters. Better estimators for the parameters
and simple ways of taking advantage of the true output statistics
could be explored. The field of adaptation with soft information and
reliable adaptation algorithms with limited data is itself still nascent
and much further exploration is possible.
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Fig. 4. System A- Performance with Various Adaptation Schemes
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System B shows similar trends, in general. The performances of
the Gaussian Mixture and Best-Fit Gaussian based soft-decision di-
rected equalizers is better than the one that uses Gaussian decisions
with means at symbols. However, at low SNRs in this case we see
that the Best-Fit Gaussian, which is an approximation to the Gaus-
sian Mixture, actually outperforms the latter, contradicting Figure
4a!

The reason is that, the more components there are in the mix-
ture (|S|P−1), the more data is needed to estimate the parameters.
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Moreover, the lower the SNR, the more data is needed to get reliable
estimates (intuitively, more noise needs to be averaged out). The
performance of the soft-decision directed adaptation with the Gaus-
sian Mixture model depends on the accuracy of the model. Thus,
the inaccurate exact model does not do as well as the approximate
model.

Finally, for the much longer System C, it is impractical to fit a
Gaussian Mixture distribution, due to the computational complexity
of finding the parameters. With time-varying channels, and when
the channel length is unknown, this problem is even harder. The 2
different Gaussian approximations, which are practical, perform as
before- the high SNR performance is nearly identical, and at low
SNRs the Best-Fit procedure, which estimates the means, does bet-
ter. However, the Best-Fit procedure requires the estimation of 2
parameters during training, and thus, requires more data to get accu-
rate estimates. This might become an issue in non-stationary envi-
ronments, or if not much training data can be used.

5. CONCLUSIONS

The effect of the statistical model used by the decision device on
the performance of adaptation algorithms was examined. The opti-
mal decision device would depend on the distribution of the equal-
izer output, which is a Gaussian Mixture. The Best-Fit Gaussian
statistics for the output statistics was derived. We then showed how
the decision devices that use these models behave, and compared
the performance of these, versus the hard-decision directed equal-
izer and the soft decision device of [8] that uses a Gaussian with
means at symbols as the model.

While the Gaussian Mixture does better, it does not have a sig-
nificant advantage over the Best-Fit Gaussian in practice. Further,
estimating the parameters of the mixture is complicated, and may
not even be possible with time-varying systems. Thus, the Best-Fit
Gaussian does acceptably well in terms of both complexity and per-
formance. The Gaussian with the “means at symbols” assumption is
reasonable at high SNRs.

However, all of the work herein with practical systems assumed
stationary output statistics. Performance could be improved by
tracking the model parameters. Better estimators for the parameters
and simple ways of taking advantage of the true output statistics
could be explored. The field of adaptation with soft information and
reliable adaptation algorithms with limited data is itself still nascent
and much further exploration is possible.
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of finding the parameters. With time-varying channels, and when
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different Gaussian approximations, which are practical, perform as
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SNRs the Best-Fit procedure, which estimates the means, does bet-
ter. However, the Best-Fit procedure requires the estimation of 2
parameters during training, and thus, requires more data to get accu-
rate estimates. This might become an issue in non-stationary envi-
ronments, or if not much training data can be used.
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System B shows similar trends, in general. The performances of
the Gaussian Mixture and Best-Fit Gaussian based soft-decision di-
rected equalizers is better than the one that uses Gaussian decisions
with means at symbols. However, at low SNRs in this case we see
that the Best-Fit Gaussian, which is an approximation to the Gaus-
sian Mixture, actually outperforms the latter, contradicting Figure
4a!

The reason is that, the more components there are in the mix-
ture (|S|P−1), the more data is needed to estimate the parameters.
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Moreover, the lower the SNR, the more data is needed to get reliable
estimates (intuitively, more noise needs to be averaged out). The
performance of the soft-decision directed adaptation with the Gaus-
sian Mixture model depends on the accuracy of the model. Thus,
the inaccurate exact model does not do as well as the approximate
model.

Finally, for the much longer System C, it is impractical to fit a
Gaussian Mixture distribution, due to the computational complexity
of finding the parameters. With time-varying channels, and when
the channel length is unknown, this problem is even harder. The 2
different Gaussian approximations, which are practical, perform as
before- the high SNR performance is nearly identical, and at low
SNRs the Best-Fit procedure, which estimates the means, does bet-
ter. However, the Best-Fit procedure requires the estimation of 2
parameters during training, and thus, requires more data to get accu-
rate estimates. This might become an issue in non-stationary envi-
ronments, or if not much training data can be used.

5. CONCLUSIONS

The effect of the statistical model used by the decision device on
the performance of adaptation algorithms was examined. The opti-
mal decision device would depend on the distribution of the equal-
izer output, which is a Gaussian Mixture. The Best-Fit Gaussian
statistics for the output statistics was derived. We then showed how
the decision devices that use these models behave, and compared
the performance of these, versus the hard-decision directed equal-
izer and the soft decision device of [8] that uses a Gaussian with
means at symbols as the model.

While the Gaussian Mixture does better, it does not have a sig-
nificant advantage over the Best-Fit Gaussian in practice. Further,
estimating the parameters of the mixture is complicated, and may
not even be possible with time-varying systems. Thus, the Best-Fit
Gaussian does acceptably well in terms of both complexity and per-
formance. The Gaussian with the “means at symbols” assumption is
reasonable at high SNRs.

However, all of the work herein with practical systems assumed
stationary output statistics. Performance could be improved by
tracking the model parameters. Better estimators for the parameters
and simple ways of taking advantage of the true output statistics
could be explored. The field of adaptation with soft information and
reliable adaptation algorithms with limited data is itself still nascent
and much further exploration is possible.

Fig. 5. System B- Performance with Various Adaptation Schemes,
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System B shows similar trends, in general. The performances of
the Gaussian Mixture and Best-Fit Gaussian based soft-decision di-
rected equalizers is better than the one that uses Gaussian decisions
with means at symbols. However, at low SNRs in this case we see
that the Best-Fit Gaussian, which is an approximation to the Gaus-
sian Mixture, actually outperforms the latter, contradicting Figure
4a!

The reason is that, the more components there are in the mix-
ture (|S|P−1), the more data is needed to estimate the parameters.
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Moreover, the lower the SNR, the more data is needed to get reliable
estimates (intuitively, more noise needs to be averaged out). The
performance of the soft-decision directed adaptation with the Gaus-
sian Mixture model depends on the accuracy of the model. Thus,
the inaccurate exact model does not do as well as the approximate
model.

Finally, for the much longer System C, it is impractical to fit a
Gaussian Mixture distribution, due to the computational complexity
of finding the parameters. With time-varying channels, and when
the channel length is unknown, this problem is even harder. The 2
different Gaussian approximations, which are practical, perform as
before- the high SNR performance is nearly identical, and at low
SNRs the Best-Fit procedure, which estimates the means, does bet-
ter. However, the Best-Fit procedure requires the estimation of 2
parameters during training, and thus, requires more data to get accu-
rate estimates. This might become an issue in non-stationary envi-
ronments, or if not much training data can be used.

5. CONCLUSIONS

The effect of the statistical model used by the decision device on
the performance of adaptation algorithms was examined. The opti-
mal decision device would depend on the distribution of the equal-
izer output, which is a Gaussian Mixture. The Best-Fit Gaussian
statistics for the output statistics was derived. We then showed how
the decision devices that use these models behave, and compared
the performance of these, versus the hard-decision directed equal-
izer and the soft decision device of [8] that uses a Gaussian with
means at symbols as the model.

While the Gaussian Mixture does better, it does not have a sig-
nificant advantage over the Best-Fit Gaussian in practice. Further,
estimating the parameters of the mixture is complicated, and may
not even be possible with time-varying systems. Thus, the Best-Fit
Gaussian does acceptably well in terms of both complexity and per-
formance. The Gaussian with the “means at symbols” assumption is
reasonable at high SNRs.

However, all of the work herein with practical systems assumed
stationary output statistics. Performance could be improved by
tracking the model parameters. Better estimators for the parameters
and simple ways of taking advantage of the true output statistics
could be explored. The field of adaptation with soft information and
reliable adaptation algorithms with limited data is itself still nascent
and much further exploration is possible.
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the performance of adaptation algorithms was examined. The opti-
mal decision device would depend on the distribution of the equal-
izer output, which is a Gaussian Mixture. The Best-Fit Gaussian
statistics for the output statistics was derived. We then showed how
the decision devices that use these models behave, and compared
the performance of these, versus the hard-decision directed equal-
izer and the soft decision device of [8] that uses a Gaussian with
means at symbols as the model.

While the Gaussian Mixture does better, it does not have a sig-
nificant advantage over the Best-Fit Gaussian in practice. Further,
estimating the parameters of the mixture is complicated, and may
not even be possible with time-varying systems. Thus, the Best-Fit
Gaussian does acceptably well in terms of both complexity and per-
formance. The Gaussian with the “means at symbols” assumption is
reasonable at high SNRs.

However, all of the work herein with practical systems assumed
stationary output statistics. Performance could be improved by
tracking the model parameters. Better estimators for the parameters
and simple ways of taking advantage of the true output statistics
could be explored. The field of adaptation with soft information and
reliable adaptation algorithms with limited data is itself still nascent
and much further exploration is possible.
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