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ABSTRACT

We consider the problem of channel estimation for OFDM-
based amplify-and-forward (AF) two-way relay networks (TWRNs).
Unlike previous works which were based on a fully pilot-based ap-
proach, we propose a semi-blind approach that exploits both the
transmitted pilots as well as the received data samples to provide an
enhanced estimation performance. Superimposed training is adopted
at the relay to assist in the estimation of the individual channels. We
base our semi-blind estimator on the maximum-likelihood (ML)
criterion and employ an iterative low-complexity Quasi-Newton
method to obtain the ML semi-blind channel estimates. As a per-
formance benchmark we derive the semi-blind Cramer-Rao bound
(CRB). Using simulation studies, we show that the proposed ap-
proach provides a substantial improvement in estimation accuracy
over the conventional pilot-based approach.

Index Terms— Amplify-and-forward relays, OFDM, semi-
blind channel estimation, superimposed training, two-way relays.

1. INTRODUCTION

Two-way relay networks [1] (TWRNs) have attracted the attention
of many researchers as a spectrally efficient solution for bidirectional
communication. In studying TWRNs, researchers have considered
both the amplify-and-forward (AF) and the decode-and-forward
(DF) relaying protocols. AF TWRNs are appealing due to the min-
imal processing they require at the relay. However, they require
highly accurate information about the channel to cancel the inherent
self-interference at the terminals. Hence, it is essential to develop
accurate and efficient channel estimation algorithms for AF TWRNs.

The problem of channel estimation for AF TWRNs has been
studied in several recent works [2–7]. Some of these assume flat-
fading channel conditions [2–4], while others [5–7] consider the
more challenging case of frequency selective fading where OFDM
transmission is employed to combat the multipath phenomenon. In
both cases, most previous works adopt a fully pilot-based approach
that estimates the channel parameters exclusively through the use
of pilot symbols [3–7]. This approach does not exploit the known
self-interference symbols present in the received signals at each ter-
minal during data transmission, that can serve as pseudo-pilots to
improve the estimation performance. To capitalize on the presence
of these pseudo-pilots, blind and semi-blind estimation techniques
can be employed. Blind estimation relies only on the data samples
to estimate the channels, but the use of a small number of pilots is
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still needed to resolve inherent ambiguity. Assuming flat-fading con-
ditions, blind estimation was used to estimate the cascaded (compos-
ite) channels for MPSK-based AF TWRNs in [2]. For the frequency-
selective scenario, an algorithm was developed in [8] to estimate the
cascaded channels blindly using the second-order statistics of the
received signal. As shown in [8], a large number of OFDM sym-
bols is required to achieve accurate channel estimation blindly in the
frequency-selective environment. The semi-blind approach, on the
other hand, is more flexible as it incorporates into the estimation both
the pilots as well as the received data samples. For the estimation of
cascaded channels under flat-fading conditions, it was shown in [9]
that the semi-blind approach provides substantially higher accuracy
than the pilot-based approach while employing only a limited num-
ber of data samples and the same number of pilots as the pilot-based
approach. For MIMO-OFDM based AF TWRNs, a semi-blind algo-
rithm was proposed in [10] to jointly estimate the cascaded channels
and decode the data using the expectation conditional maximization
approach with soft interference cancellation.

In this work, we consider semi-blind channel estimation for
OFDM-based AF TWRNs. As done in [5–7], we focus on the
estimation of the individual channels, rather than the cascaded chan-
nels. Although the cascaded channels are sufficient for detection,
the individual channels are useful in their own right as they are
often needed in other applications such as beamforming [11]. To
assist in the estimation of the individual channels, we adopt a su-
perimposed training strategy at the relay. This strategy has been
applied before in the context of pilot-based estimation [7, 12], but
we are the first to use it for semi-blind estimation in AF TWRNs,
to the best of our knowledge. Our proposed estimator is based on
the maximum-likelihood (ML) criterion. To simplify the semi-blind
likelihood function, the transmitted data is assumed to be Gaussian
distributed. The ML channel estimates are obtained numerically
using an iterative Quasi-Newton method. As a benchmark on es-
timation performance, we also derive the semi-blind Cramer-Rao
bound (CRB). Using simulations, we show that the proposed semi-
blind estimator closely approaches the semi-blind CRB and provides
substantial improvements in accuracy over the pilot-based approach,
even when the data symbols are drawn from discrete constellations,
e.g., QPSK.

The rest of the paper is organized as follows. In Section 2 we
present the system model. The proposed semi-blind channel estima-
tion algorithm is presented in Section 3. The CRBs are derived in
Section 4. Simulation results are presented in Section 5. Finally, our
conclusions are in Section 6.
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Fig. 1. Structure of the OFDM frame transmitted by the terminals.

2. SYSTEM MODEL

We consider a half-duplex AF TWRN with two source nodes, T1
and T2, and a single relaying node R which operates in frequency
selective channel conditions. To compensate for the multipath phe-
nomenon, OFDM transmission is employed, using N subcarriers.
Data is exchanged between T1 and T2 in rounds that consist of two
phases. In the first phase, the two terminals simultaneously trans-
mit an OFDM frame to R. In the second phase, R broadcasts an
amplified version of the received frame.

2.1. Transmission at the Terminals

Each OFDM frame transmitted by the terminals is composed of one
pilot block andK data blocks (see Fig. 1). Furthermore, each OFDM
block (pilot or data) consists ofN time-domain symbols and a cyclic
prefix (CP) of appropriate length that is inserted to avoid inter-block
interference. We denote by t̃1 and t̃2 theN×1 frequency-domain pi-
lot symbol vectors of T1 and T2, and by s̃1k and s̃2k, k = 1, . . . ,K,
the N × 1 frequency-domain data symbol vectors of T1 and T2,
respectively. The corresponding time-domain pilot and data sym-
bol vectors are t1 = FH t̃1, t2 = FH t̃2, s1k = FH s̃1k and
s2k = FH s̃2k, k = 1, . . . ,K, where F is the N × N normal-
ized discrete Fourier transform (DFT) matrix whose (p, q)th entry
is 1/
√
Ne−2π(p−1)(q−1)/N . Moreover, we assume that the aver-

age transmission powers of T1 and T2 during pilot transmission are
P1 and P2, respectively, i.e., t̃H1 t̃1 = NP1 and t̃H2 t̃2 = NP2.
For simplicity, we also assume that the same average transmission
powers are employed by the terminals for data transmission, that is,
E
{
sH1ks1k

}
= NP1 and E

{
sH2ks2k

}
= NP2.

The baseband channels from T1 to R and from T2 to R are de-
noted by h , [h1, . . . , hL]T , and g , [g1, . . . , gJ ]T , respectively.
The elements of h and g are modelled as independent and identi-
cally distributed (i.i.d.) circular complex Gaussian random variables
with mean zero and variance γ2. We also assume quasi-static chan-
nel conditions, such that the channels h and g are fixed for the frame
duration.

2.2. Processing at the Relay

The received vector at the relay corresponding to the transmitted pi-
lot blocks after CP removal is given by

r = Ht1 +Gt2 + n, (1)

where H and G are N × N circulant matrices with first columns
[hT ,01×(N−L)]

T and [gT ,01×(N−J)]
T , respectively, and n is cir-

cular complex white Gaussian noise vectors with mean zero and co-
variance1 σ2IN , denoted as CCN (0, σ2IN ). Similarly, the received

1IN denotes the N ×N identity matrix.

vectors corresponding to the K data blocks are

rk = Hs1k +Gs2k + nk, (2)

where n1, . . . ,nK are also CCN (0, σ2IN ).
The relay first amplifies the received pilot block, using an am-

plification factor Ap > 0. Then, to assist channel estimation at
the terminals, it superimposes2 [7] over the amplified vector Apr
a time-domain pilot vector t3 = FH t̃3, where t̃3 is the correspond-
ing frequency-domain vector. The resulting signal vector is given
by

Apr + t3 = ApHt1 +ApGt2 +Apn+ t3. (3)

The average transmission power of the relay over the long term (i.e.,
over many OFDM frames) is set at Pr . This power is divided be-
tween the amplified signal vector Apr and the superimposed vec-
tor t3. More specifically, αPr is allocated to the superimposed pi-
lot and (1 − α)Pr is allocated to Apr, where 0 < α < 1. Us-
ing the statistics of the channels h and g, it can be shown that
N−1E{rHr} = Lγ2P1+Jγ2P2+σ2. Hence, to allocate (1−α)Pr
to the amplified signal, the amplification factor should be set as

Ap =
√

(1−α)Pr

Lγ2P1+Jγ2P2+σ2 .
The relay also amplifies the information-bearing vectors rk, us-

ing an amplification factor Ad > 0, but without superimposing a
pilot. In this case, the relay can maintain an average transmission

power of Pr by using Ad =
√

Pr
L1γ2P1+J1γ2P2+σ2 . Before broad-

casting the frame that contains the amplified pilot and data vectors,
the relay inserts a new CP into each block in the frame.

2.3. Received Vectors at the Terminal

Assuming reciprocal channels, the pilot-bearing received signal
block at T1 after CP removal is given by

y = ApHHt1 +ApHGt2 +Ht3 +ApH2n+w. (4)

Moreover, the K information bearing received signal blocks are
given by

zk = AdHHs1k +AdHGs2k +AdHnk +wk, (5)

wherew1, . . . ,wK are also CCN (0, σ2IN ).

3. SEMI-BLIND CHANNEL ESTIMATION

In this section, we present the proposed semi-blind channel estima-
tion algorithm. The channel parameters are collected into the vec-
tor θ , [hT , gT ]T . To derive the semi-blind estimator, we will
use the joint likelihood function of the vectors y,z1, . . . , zK . This
likelihood function depends on the specific constellation from which
the frequency-domain data symbol vectors s̃21, . . . , s̃2K are drawn.
Unfortunately, taking into account the discrete statistics of these vec-
tors would result in a very complicated likelihood function. Instead,
we obtain a more tractable function by resorting to the Gaussian ap-
proximation and modelling the data vectors s̃21, . . . , s̃2K as i.i.d.

2The superimposed pilot makes the individual channels h and g identi-
fiable without ambiguity. If superimposed training is not employed, an N -
dimensional binary search would be needed in order to estimate the vectors
h and g up to a sign ambiguity [5].
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CCN (0, P2IN ). In Section 5, we will examine the effect of this ap-
proximation using simulations. As we will see, the proposed semi-
blind estimator performs well even when the data symbol vectors are
drawn from discrete constellations such as QPSK.

Under the Gaussian assumption, the joint likelihood can be ex-
pressed in terms of the first and second order statistics of the vectors
y,z1, . . . , zK . Let us denote by µ and C the mean and covariance
matrix of y, respectively. From (4), we see that

µ = E {z} = ApHHt1 +ApHGt2 +Ht3, (6)

C = A2
pσ

2HHH + σ2IN . (7)

Furthermore, let us denote by µk the mean of zk and by Q the cor-
responding covariance matrix. It follows from (5) that

µk = E {zk} = AdHHs1k, (8)

Q = A2
dP2HGG

HHH +A2
dσ

2HHH + σ2IN . (9)

Letting z̄ , [zT1 , . . . , z
T
K ]T , the joint likelihood function of y

and z̄ is given by3

f(y, z̄;θ) =
1

πN |C|e
−(y−µ)HC−1(y−µ)×

K∏
k=1

1

πN |Q|e
−(zk−µk)

HQ−1(zk−µk).

(10)

Hence, the corresponding joint log-likelihood function is

L(y, z̄;θ) = −(K + 1)N log π − log |C| −K log |Q|−

(y − µ)HC−1(y − µ)−
K∑
k=1

(zk − µk)HQ−1(zk − µk).
(11)

Therefore, the semi-blind maximum-likelihood (ML) estimates of h
and g are given by

{ĥ
(s)
, ĝ(s)} = arg min

h, g
log |C|+K log |Q|+

(y − µ)HC−1(y − µ) +

K∑
k=1

(zk − µk)HQ−1(zk − µk).

(12)

The solution to the minimization problem in (12) may be obtained
using standard numerical techniques such as Newton or Quasi-
Newton methods [13, 14]. In our work, we use the Broyden-
Fletcher-Goldfarb-Shanno (BFGS) method. This is an efficient,
low-complexity Quasi-Newton method which avoids the compu-
tation of the Hessian matrix and requires no matrix inversion. To
initialize the BFGS algorithm, we can use the estimates provided by
the low-complexity pilot-based LS estimator of [7].

4. CRAMER-RAO BOUND

In this section, we will derive the CRB for semi-blind estimation of
the channel parametersh and g. The CRB is obtained by treating the
data as Gaussian-distributed. The joint log-likelihood in (11) may be
expressed as L(y, z̄;θ) = L(y;θ) + L(z̄;θ), where

L(y;θ) = −N log π − log |C| − (y − µ)HC−1(y − µ) (13)

3|A| denotes the determinant of A.

is the log-likelihood for the pilot-bearing received vector and

L(z̄;θ) = −K log |Q| −
K∑
k=1

(zk − µk)HQ−1(zk − µk) (14)

is the log-likelihood for theK information-bearing received vectors.
The Fisher information matrix (FIM) for semi-blind estimation is
thus given by

Γs = E
{
∂L(y, z̄;θ)

∂θ∗
∂L(y, z̄;θ)

∂θT

}
= Γp + Γd, (15)

where

Γp = E
{
∂L(y;θ)

∂θ∗
∂L(y;θ)

∂θT

}
(16)

is the FIM for pilot-based estimation and

Γd = E
{
∂L(z̄;θ)

∂θ∗
∂L(z̄;θ)

∂θT

}
(17)

is the FIM corresponding to the received data samples z1, . . . , zK .
The FIM for the pilot-based channel estimation without super-

imposed training was obtained in [15], and it can be easily modified
to obtain Γp by accounting for the presence of the superimposed
pilot. In particular, we have that Γp = Λp + Σp where

Λp =

[
∂µH

∂h∗ C
−1 ∂µ

∂hT
∂µH

∂h∗ C
−1 ∂µ

∂gT

∂µH

∂g∗ C
−1 ∂µ

∂hT
∂µH

∂g∗ C
−1 ∂µ

∂gT

]
, (18)

[Σ]ij = tr
(
C−1 ∂C

∂θ∗i
C−1 ∂C

∂θj

)
, (19)

and
∂µ

hT
= 2ApHΥ(t1) +AGΥ(t2) + Υ(t3),

∂µ

gT
= 0N×J , (20)

where Υ(x) is the N ×L circulant matrix with first column x. The
elements of Σp can be evaluated by noting that ∂C

∂hi
= A2

pσ
2EiH

H

and ∂C
∂gi

= 0N×N , where Ei is the N × N circulant matrix with
first column4 ei. The CRB for pilot-based estimation is thus given
by CRB(p)

θ = tr(Γ−1
p ).

We next find Γd. From (14) we see that Γd =
K∑
k=1

Γ
(k)
d +KΣd,

where

Γ
(k)
d =

 ∂µk
H

∂h∗ Q
−1 ∂µk

∂hT
∂µk

H

∂h∗ Q
−1 ∂µk

∂gT

∂µk
H

∂g∗ Q
−1 ∂µk

∂hT
∂µk

H

∂g∗ Q
−1 ∂µk

∂gT

 , (21)

and

[Σd]ij = tr
(
Q−1 ∂Q

∂θ∗i
Q−1 ∂Q

∂θj

)
. (22)

Since µk = AdHHs1k, we have that

∂µk
∂hT

= 2AdHΥ(s1k),
∂µk
∂gT

= 0N×N . (23)

To evaluate (22), we can use the expression forQ in (9) to obtain

∂Q

∂hi
= A2

dP2EiGG
HHH +A2

dσ
2EiH

H , (24)

and
∂Q

∂gi
= A2

dP2HEiG
HHH . (25)

Finally, the semi-blind CRB is given by CRB(s)
θ = tr(Γ−1

s ).

4The vector ei is the N × 1 basis vector with the ith element 1 and the
remaining elements 0.
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5. SIMULATION RESULTS

In this section, we investigate through simulations the performance
of the proposed semi-blind algorithm and compare it to that of the
fully pilot-based approach. Our results are obtained assuming that
P1 = P2 = 1

2
Pr . In addition, we assume that h has 5 taps and g

has 4. We average our results over a set of 100 independent real-
izations of h and g. The taps of each channel vector are modelled
as i.i.d. CCN (0, 1). The number of carriers is set as N = 64.
Unless mentioned otherwise, the number of data blocks is K = 20.
The BFGS algorithm is employed to solve the minimization problem
in (12), in combination with backtracking linesearch [13] that is used
to find the appropriate step size at each iteration. We assume that the
BFGS algorithm has converged when ‖∇L(ȳ;θ{n})‖2 < 10−4,
where θ{n} is the value of estimate of θ at the nth iteration. To
initialize the BFGS algorithm, we use the estimates provided by the
pilot-based LS estimator derived in [7] followed by 3 iterations of
the iterative improvement procedure proposed therein. The param-
eter α that controls power allocation for the superimposed pilot is
fixed at 0.2. For comparison purposes, we consider the pilot-based
LS estimator followed by 15 iterations of the iterative improvement
procedure in [7].

In Fig. 2, we plot the MSE performances of the semi-blind al-
gorithm and the pilot-based algorithm versus SNR along with the
corresponding semi-blind and pilot-based CRBs. The MSE perfor-
mance of the semi-blind estimator is shown for the case where the
symbol vectors s̃1k, s̃2k, k = 1, . . . ,K are CCN (0, P2IN ) as well
as the case where they are generated using QPSK modulation. In
both cases, as we can see from Fig. 2, the semi-blind approach pro-
vides a substantial improvement in accuracy over the pilot-based ap-
proach. Furthermore, the MSE of the semi-blind algorithm closely
approaches the semi-blind CRB as SNR increases.

In Fig. 3 we show the average number of iterations needed for
the BFGS algorithm to converge at different SNR values for Gaus-
sian data. The average number of iterations drops below 24 at 12dB
and below 10 at 21dB. Hence, the performance improvement pro-
vided by the semi-blind approach comes at a reasonable computa-
tional load.

Finally, in Fig. 4, we plot the MSE performance of the semi-
blind algorithm versus the number of OFDM data blocks K, along
with the semi-blind CRB for Gaussian data. As expected the ac-
curacy of the semi-blind estimator improves as K increases, which
shows that the longer the coherence time of the channel the more
attractive the semi-blind approach becomes.

6. CONCLUSIONS

In this paper, we investigated semi-blind estimation of individual
channels for OFDM-based AF TWRNs and compared it to the con-
ventional pilot-based approach. To assist in the estimation of the
individual channels, we employed superimposed training at the re-
lay. The semi-blind ML estimator was implemented iteratively using
the BFGS algorithm. As a performance benchmark, we derived the
semi-blind CRB. Using simulation studies, we showed that the pro-
posed semi-blind algorithm provides a substantial improvement in
accuracy over the pilot-based approach. Moreover, the performance
of the semi-blind algorithm closely approaches the derived semi-
blind CRB. These performance gains come at a reasonable com-
putational cost and do not require the channel to be constant for a
long duration, which clearly establishes the merit and practicality of
semi-blind channel estimation for AF TWRNs.
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