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ABSTRACT

The direct application of orthogonal space-time block coding (OS-
TBC) for multiple input and multiple output (MIMO) systems to
distributed cooperative relay networks makes the equivalent chan-
nel matrix for maximum likelihood (ML) detection lose its orthog-
onality. Hence, this paper proposes a new design that makes the
channel matrix be orthogonally distributed (OD) for a suboptimal
symbol-by-symbol detector (SBSD). Using ODSTBC, an asymp-
totic symbol error probability (SEP) formula with SBSD is de-
rived, showing the optimal diversity gain function is achieved. In
addition, two kinds of ODSTBC designs for the distributed relay
networks are presented, which interestingly renders that SBSD is
equivalent to the ML detector. Numerical results verify the diver-
sity analysis and indicate competitive error performance to cur-
rently available orthogonal distributed STBC designs with much
simpler complexity.

1. INTRODUCTION

Installing multiple antennas as in MIMO systems is often imprac-
tical in mobile communications. Therefore, cooperative diversity
has recently been revived [1–11], in which the in-cell mobile users
share the use of their antennas to create a virtual array through
distributed transmission and signal processing. Since this arrange-
ment forms a distributed MIMO system, the diversity techniques
for the MIMO systems have been naturally extended to such relay-
ing networks for the design of so-called distributed STBC [7,9,12].
It is known that among all STBC designs for MIMO systems, or-
thogonal STBC [13–16] is particularly attractive, since they can
provide maximum diversity using a linear processing maximum
likelihood detector. Hence, a natural question is whether or not
OSTBC can be directly extended to distributed cooperative net-
works? Unfortunately, the answer to this question is negative. Un-
like in a MIMO system, the channel gain in the relay system is the
product of two Gaussian random channels. As a result, the direct
application of OSTBC for MIMO systems to distributed cooper-
ative relay networks will make the equivalent channel matrix for
ML detection lose its orthogonality. This fact was first realized
in [17]. Hence, the researchers in [18, 19] proposed distributed or-
thogonal STBC designs with the ML receiver. The work of this
paper is closely related to those in [18, 19]. However, the idea
here is significantly different. We require that the channel matrix
is orthogonally distributed for the SBSD rather than the equiv-
alent whitened channel matrix is orthogonal for the ML detector,
thereby, avoiding the inverse operation of the noise covariance ma-
trix. Another contribution of this paper is to derive an asymptotic
SEP formula for all ODSTBCs with the SBSD, showing the op-
timal diversity gain function is achieved, which, however, were
just verified by computer simulations in [18, 19] without any cal-
culations of SEP. Very interestingly, two kinds of simple ODSTBC
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Fig. 1. System Model of Distributed Relay Channels

designs presented in this paper render that the SBSD is equivalent
to the ML detector.

Notation: Column vectors and matrices are boldface lower-
case and uppercase letters, respectively; the matrix transpose, the
complex conjugate, the Hermitian are denoted by (·)T , (·)∗, (·)H ,
respectively; E[·] denotes the expected value of the expression in
brackets; IN denotes theN ×N identity matrix; Notation A � B
denotes that A and B are positive semi-definite and A − B is
also positive semi-definite; The entry of matrix A in the ith row
and jth column is denoted by [A]ij ; Notation ⊗ denotes the Kro-
necker product. Notation f(x) = O(g(x)) with g(x) ≥ 0 denotes
that there exists a pair of constants, c1 and c2, independent of the
variable x such that c1g(x) ≤ f(x) ≤ c2g(x).

2. SYSTEM MODEL

In this section, we consider a distributed one-way relay network
consisting of N + 2 nodes: one source, one destination and N re-
lays, each of which is equipped with a single antenna, as shown
in Fig. 1. The channel gain between the nth relay and source is
denoted by fn, while the channel gain between the nth relay and
destination is denoted by gn, n = 1, . . . N . All of these coeffi-
cients are assumed to be independent, identically distributed (i.i.d.)
and circularly symmetric complex Gaussian random variables with
zero mean and unit variance. In addition, the channels are assumed
to be quasi-static and flat fading. For practical application, we also
assume that the relays do not have any CSI, while the destination
could have CSI of channels from source to relays and from relays
to destination through training or a feedback channel.

In a whole transmission process, total K symbols are trans-
mitted from the source to the destination. More specifically, there
are two communication phases, the first one of which has K time
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slots while the second one has T ≥ K slots. In the first K slots,
K symbols are transmitted consecutively from the source to all
relays:

rn = fnx + ξn, (1)
where rn = [rn1, rn2, . . . , rnK ]T , x = [x1, x2, . . . , xK ]T and
ξn = [ξn1, ξn2, . . . , ξnK ]T . The symbols xk for k = 1, 2, · · · ,K
are randomly, independently and equally likely chosen from the
M -ary QAM constellation with E[xxH ] = I. The noise vectors
are assumed to be circularly symmetric complex Gaussian with
covariance matrix E[nmnHn ] = δmnσ

2IK , where δmn denotes
the delta sequence, i.e., δmn = 1 if m = n, and otherwise, 0.
Then, a linear dispersion coding scheme is adopted at the relay
stations, i.e.,

zn = Anrn + Bnr∗n, (2)
where An ∈ CT×K and Bn ∈ CT×K , n = 1, 2, . . . , N . In
the next communication phase, each relay forwards these coded
signals to the destination during T consecutive time slots. The
(relative) symbol rate of this system is thus defined by K/T per
channel use. Therefore, the signal vector received at the destina-
tion can be written as

y = Ax + Bx∗ + η, (3)

where A =
∑N
n=1 hnAn, B =

∑N
n=1 h̄nBn with hn = fngn

and h̄n = f∗ngn, and η = [A1ξ1 + B1ξ
∗
1, · · · ,ANξN +

BNξ∗N ]g + v. Here, the noise vector v at the destination is also
assumed to be circularly symmetric complex Gaussian with zero
mean and covariance matrix E[vvH ] = σ2IT , thereby, resulting
in the fact that the covariance matrix of η is

R = E[ηηH ] = σ2

[
IT +

N∑
n=1

|gn|2(AnA
H
n +BnB

H
n )

]
. (4)

It is known that when CSI is completely available at the destina-
tion, the optimal receiver for estimation of the transmitted signal
x in (3) is the ML receiver, which is equivalent to solving the fol-
lowing optimization problem:

arg min
x

(Ax + Bx∗ − y)
H

R−1 (Ax + Bx∗ − y) . (5)

However, the computation complexity increases exponentially.
Hence, in this paper, we seek for an orthogonal structure for the
suboptimal SBSD. To do that, we notice that there exists a ma-
trix family Āk ∈ CT×T and B̄k ∈ CT×T , k = 1, 2, . . . ,K
with the nth column of Āk and B̄k being the kth column of An

and Bn, respectively, such that A = [Ā1h, Ā2h, . . . , ĀKh] and
B = [B̄1h̄, B̄2h̄, . . . , B̄K h̄].

3. ORTHOGONAL DESIGN CRITERIA

In this section, orthogonal design criteria are introduced. Similar
to OSTBC, we assemble the original and conjugate version of (3)
such that[

y
y∗

]
=

[
A B
B∗ A∗

]
︸ ︷︷ ︸

H

[
x
x∗

]
+

[
η
η∗

]
. (6)

Now, we are in the position to introduce the following definition:

Definition 1 It is said that {Āk, B̄k}Kk=1 is orthogonally dis-
tributed if

HHH = ‖h‖2I. (7)
for any complex numbers fn and gn, n = 1, 2, . . . , N .

Theorem 1 {Āk, B̄k}Kk=1 is orthogonally distributed if and only
if the following three conditions are satisfied simultaneously:

1) ĀH
k Āl + B̄H

l B̄k = δklI

2) [ĀH
k Āl]ij = 0, [B̄H

l B̄k]ij = 0 for i 6= j

3) ĀH
k B̄l + ĀH

l B̄k = 0

By Theorem 1 and the definition of Ān and B̄n, we can attain the
following corollary.

Corollary 1 That {Āk, B̄k}Kk=1 is orthogonally distributed is
equivalent to the fact that the following three conditions are satis-
fied simultaneously:

1) AH
n An + BT

nB∗n = I

2) AH
mAn = 0, BH

mBn = 0 for m 6= n

3) AH
mBn + BT

nA∗m = 0

The proofs of Theorem 1 and its corollary are omitted because
of space limitation. For ODSTBC, multiplying (6) with HH and
taking the first half of the signal vector yield

ỹ = ‖h‖2x + η̃, (8)

where η̃ = AHη + BTη∗. Hence, this leads us to propose the
following suboptimal SBSD:

x̂ = arg min
x

∥∥ỹ − ‖h‖2x∥∥. (9)

Particularly, when the covariance matrix of η̃, R̃ = E[η̃η̃H ], is
an identity matrix up to a scale, the SBSD is equivalent to the
ML detector. Here, it should be worth emphasizing that the chan-
nel model (9) is not equivalent to the channel model (3) from the
viewpoint of detection theory. Now, let us analyze error perfor-
mance of the SBSD (9). Note that since AH

n An + BT
nB∗n = I,

and T ≥ K, we have 0 � AnAH
n + BnBH

n � I and thus,
σ2‖h‖2I � R̃ � σ2(1 + ‖g‖2)‖h‖2I. The SEP of SBSD for the
square M -ary QAM constellation is upper and lower bounded by

PSEP ≤ P1 = 4

(
1− 1√

M

)
Q1 − 4

(
1− 1√

M

)2

Q2
1, (10a)

PSEP ≥ P2 = 4

(
1− 1√

M

)
Q2 − 4

(
1− 1√

M

)2

Q2
2, (10b)

where Q1 = Q

(
‖h‖d

σ
√

2(1+‖g‖2)

)
, Q2 = Q

(
‖h‖d√

2σ

)
, and

Q(·) is the Q-function, whose alternative expression is Q(x) =
1
π

∫ π
2

0
exp

(
− x2

2 sin2 θ

)
dθ, where d =

√
6Es
M−1

is the minimum
distance in QAM constellation and Es is the average symbol en-
ergy. Based on the assumptions of the channel coefficients fn
and gn, the probability density functions of |fn|2 and |gn|2 are
all p(t) = exp(−t). Since Ef ,g[·] = Eg {Ef [·]} and

Ef [Q1] =
1

π

∫ π
2

0

N∏
n=1

1 + ‖g‖2

1 + ‖g‖2 + |gn|2d2
4σ2 sin2 θ

dθ (11a)

Ef [Q2] =
1

π

∫ π
2

0

N∏
n=1

1

1 + |gn|2d2
4σ2 sin2 θ

dθ, (11b)
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we can obtain

Ef ,g [Q1] ≤ 1

π

∫ π
2

0

Eg

 (1 +
∑N
n=1 |gn|

2)N∏N
n=1

(
1 + |gn|2d2

4σ2 sin2 θ

)
dθ

Ef ,g [Q2] =
1

π

∫ π
2

0

Eg

 1∏N
n=1

(
1 + |gn|2d2

4σ2 sin2 θ

)
dθ

(12)

After some calculus and algebraic manipulations, we can arrive at

Eg

 (1 +
∑N
n=1 |gn|

2)N∏N
n=1

(
1 + |gn|2d2

4σ2 sin2 θ

)
 =

(
2(M − 1) sin2 θ

3

)N (
ln ρ

ρ

)N
+O

(
lnN−1 ρ

ρN

) (13)

where SNR is defined by ρ = Es/σ
2. Therefore, the upper and

lower bound of SER are

P1 ≤
4

π

(
1− 1√

M

)∫ π
2

0

(
2(M − 1) sin2 θ

3

)N (
ln ρ

ρ

)N
dθ

− 4

π

(
1− 1√

M

)2 ∫ π
4

0

(
2(M − 1) sin2 θ

3

)N (
ln ρ

ρ

)N
dθ

+O
(

lnN−1 ρ

ρN

)
P2 =

4

π

(
1− 1√

M

)∫ π
2

0

(
2(M − 1) sin2 θ

3

)N (
ln ρ

ρ

)N
dθ

− 4

π

(
1− 1√

M

)2 ∫ π
4

0

(
2(M − 1) sin2 θ

3

)N (
ln ρ

ρ

)N
dθ

+O
(

lnN−1 ρ

ρN

)
(14)

The above discussions can be summarized as the following theo-
rem:

Theorem 2 P̄SEP, the average SEP of SBSD for the channel (8)
can be represented by

P̄SEP = φ(M,N) (ln ρ/ρ)N +O((ln ρ)N−1/ρN ),

when SNR is sufficiently large, where φ(M,N) =
2N+2(M−1)N

3Nπ

(
1− 1√

M

) [∫ π
2
π
4

sin2N θdθ + 1√
M

∫ π
4

0
sin2N θdθ

]
.

Theorem 2, whose detailed proof is omitted due to space limita-
tion, reveals that using ODSTBC, the optimal diversity gain func-
tion (ln ρ/ρ)N for the relay network is achieved with the SBSD.

4. ODSTBC DESIGNS

In this section, we provide two simple designs for ODSTBC.
If we denote the code structure by X (s) = [f1A1x +
f∗1 B1x

∗, ..., fNANx + f∗NBNx∗] and use X ′(s) = [A1x +
B1x

∗, ...,ANx + BNx∗] to illustrate orthogonality for simplic-
ity, one of simple designs based on the Alamouti coding scheme
to construct Rate-2/2n ODSTBC is shown below.
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Fig. 2. BER performance comparison of Rate-1 and Rate-2/4 or-
thogonal design

Design 1 For 2n × 2n square orthogonal codes, one approach to
construct Rate-2/2n orthogonal code is

X ′(s) =
(
⊗n−1I

)
⊗
[
x1 −x∗2
x2 x∗1

]
,

where ⊗n−1I means n − 1 times Kronecker product of Identity
matrix with itself.

The following is another simple design:

Design 2 Any even number of symbols can be transmitted simul-
taneously in one process with the following structure.

X ′(s) =
(
⊗n−1I

)
⊗
{

e1 ⊗
[
x1 −x∗2
x2 x∗1

]
+ e2 ⊗

[
x3 −x∗4
x4 x∗3

]
+ · · ·

}
,

where ei = [0, . . . , 0, 1, 0, . . . , 0]T , the ith entry of which is 1.

The symbol rate for Designs 1 and 2 isR = 21−n per channel slot
use. One of significant advantages of these two ODSTBC designs
is that the noise covariance matrix R̃ in (8) is the identity matrix
up to a scale, thereby, resulting in the fact that SBSD is equiva-
lent to the ML detector, which is the major difference between the
OSTBC designs presented in this paper and the designs proposed
in [18]. The following is a specific example to demonstrate this
difference.

Example 1 Consider a specific rate-2/4 ODSTBC for a coopera-
tive network with four relays using Design 1, where

X ′(s) = diag

{[
x1 −x∗2
x2 x∗1

]
,

[
x1 −x∗2
x2 x∗1

]}
.

In this case, the covariance matrix of the noise η in (3) is R =
σ2diag{1 + |g1|2 + |g2|2, 1 + |g1|2 + |g2|2, 1 + |g3|2 + |g4|2, 1 +
|g3|2 + |g4|2}, which is not an identity matrix. However, the co-
variance matrix of the noise η̃ in (9) is an identity matrix up to a
scale. In fact, R̃ = σ2(‖h‖2 + (|g1|2 + |g2|2)(|h1|2 + |h2|2) +
(|g3|2 + |g4|2)(|h3|2 + |h4|2))I.
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5. SIMULATIONS

In this section, we carry out several numerical simulations to ver-
ify system performance of the codes designed in this paper. In all
these simulations, the transmitted symbols are randomly, indepen-
dently and equally likely chosen from the 16-QAM constellation.

Fig. 2 demonstrates the BER performance of Rate-1 code with
two relays and Rate-2/4 code with four relays, respectively. As
illustrated by Fig. 2, when SNR is sufficiently large, the simu-
lated BER converges to the dominant theoretic curve. Fig. 3 shows
the error performance comparison of the ODSTBC design (Exam-
ple 1) proposed in this paper with X(4, 4) in [18]. It can be seen
that these two curves are matched very well. However, our design
has much simpler decoding complexity, since it does not need to
calculate the inverse matrix.

6. CONCLUSION

In this paper, we proposed a new orthogonal criterion for the de-
sign of orthogonally distributed space-time block codes. Some
equivalent orthogonal conditions were discussed. It was shown by
deriving asymptotic SEP formula that ODSTBC enables the sub-
optimal SBSD to extract the optimal diversity gain function. In
addition, two simple ODSTBC designs were presented, rendering
SBSD was equivalent to the ML detector. Numerical results ver-
ified the diversity analysis and indicated better performance than
direct implementation of standard OSTBC.
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