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ABSTRACT

In this paper, we consider a half-duplex amplify-and-forward two-
way relaying network consisting of two sources with each hav-
ing a single antenna and N relays with each having two anten-
nas. For such a system with a general distributed linear dispersion
code, a tight lower bound of pairwise error probability (PEP) of the
maximum likelihood (ML) detector is derived, showing that diver-
sity gain function cannot decay faster than lnN SNR/SNR2N , where
SNR is signal to noise ratio. Particularly for N = 2b, a new dis-
tributed concatenated space-time block code (STBC) is proposed
and its asymptotic PEP formula is attained, showing that the code
presented in this paper achieves the maximum diversity gain, i.e.,
meeting the lower bound of the diversity gain function, as well as
the maximum coding gain.

1. INTRODUCTION

The pioneering study of memoryless two-way relaying networks
from the standing point of information theory can date back to the
early seminal works of Shannon [1] and Cover [2]. However, ap-
plications of the fundamental idea to wireless communication sys-
tems are more recent [3–10]. The major motivation for reviving
this research interest is due to the promising spectrum efficiency
gain of a two-way relaying network over a one-way relaying net-
work. In this paper, we consider a transmitter design to enhance
error performance for a two-way relaying network from the view-
point of detection theory. In spite of the fact that quite a few of re-
cent research results on the relaying networks clearly mimic those
of the multiple input and multiple output (MIMO) systems, some
major differences between the MIMO and relay systems are nec-
essarily and explicitly pointed out here: (a) Unlike the MIMO sys-
tem, the channel in the relay system is non-linear and multiplica-
tive, and the covariance matrix of noise depends on the channel
and the structure of the underlying distributed STBC. (b) Unlike
STBC for the MIMO system, distributed STBC for the relay sys-
tem is jointly performed through the source nodes and relay nodes
with corrupted noisy signals, whereas the signals from different re-
laying nodes cannot be cooperatively processed for transmission.
(c) Unlike the diversity gain for the MIMO system, the diversity
gain function for the relay system involves the logarithm of SNR.
Because of this, the optimal diversity gain function for a general
distributed space-time block coded relay network is not as clear
as for the MIMO system. To the best knowledge of the authors,
only the upper bound of the diversity gain function for a general
relay network was derived [11, 12], whereas asymptotic perfor-
mance analysis is available only for some specific relaying pro-
tocols [6, 13–22]. Unfortunately, the upper bound cannot tells us

what is either the best diversity gain or the optimal coding gain
for a distributed space-time block code to possibly provide for the
ML detector. (c) Power loading among source nodes and relay
nodes significantly affects the overall performance of the whole re-
lay system [11,23–25]. The principal goal of this paper is to design
a new distributed concatenated STBC for a half-duplex amplify-
and-forward two-way relaying network consisting of two sources
with each having a single antenna and N relays with each having
two antennas. This work is closely related to that in [23].

Notation: AT , A∗, AH and det(A) denote the transpose,
conjugate, and conjugate transpose, and the determinant of the ma-
trix A, respectively; E[·] denotes the expected value of the expres-
sion in brackets; IN denotes the N ×N identity matrix. Notation
f(x) = O(g(x)) with g(x) ≥ 0 denotes that there exists a pair
of constants, c1 and c2, independent of the variable x such that
c1g(x) ≤ f(x) ≤ c2g(x). A double factorial of n is denoted by
(n)!!; Notation diag(a1, a2, · · · , an) denotes a diagonal matrix
whose diagonal entries are a1, a2, · · · , an.
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Fig. 1. Two-way relaying model with N dual-antenna relays.

2. TWO-WAY RELAY NETWORKS AND LOWER BOUND
ON DIVERSITY GAIN

2.1. Two-Way Networks with Multiple Dual-Antenna Relays

In this section, we consider a half-duplex amplify-and-forward
two-way relaying network consisting of two sources with each
having a single antenna and N relays with each having two an-
tennas, as shown in Fig. 1. The two-way relaying transmission can
be described as follows.

There are in total 4N transmission time slots. In the first com-
munication phase covering the first 2N consecutive time slots,
source node Tk for k = 1, 2 transmits its messages sk =ˆ
sk,1, sk,2, · · · , sk,2N

˜T to all relay nodes, with the transmission
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power being Pk. At the l-th time slot, relay node Rj receives two
by one signal vector rj,l = [r

(1)
j,l , r

(2)
j,l ]T , given by

rj,l =
√
P1h1,js1,l +

√
P2h2,js2,l + nj,l, l = 1, · · · , 2N, (1)

where E[sks
H
k ] = I2N and hk,j = [hk,2j−1, hk,2j ]

T denotes the
the channel vector between Tk and Rj , j = 1, · · · , N . It is as-
sumed that hk,l are independent complex Gaussian random vari-
ables with each having zero-mean and variance Ωk, and remains
constant in one transmission block. nj,l denote 2 × 1 noise vec-
tors nj,l = [n

(1)
j,l , n

(2)
j,l ]T and are assumed that all entries n(i)

j,l for
i = 1, 2 are independent complex Gaussian random variables with
each having zero-mean and variance σ2. If we let the 4N by one
vector rj = [rTj,1, r

T
j,2, · · · , rTj,2N ]T , then, we have

rj =
√
P1H1,js1 +

√
P2H2,js2 + nj , (2)

where Hk,j = I2N ⊗ hk,j and nj = [nTj,1,n
T
j,2, · · · ,nTj,2N ]T .

In the second communication phase capturing the next 2N
consecutive time slots, each relaying node Rj first combines the
4N received signals into new symbols using linear dispersion cod-
ing such that

tj,l =
p
β(Aj,lrj + Bj,lr

∗
j ), (3)

where Aj,l and Bj,l are 2 × 4N coding matrices for the j-th re-
lay at the l-th time slot and β is an amplifier that is chosen in
such a way that the average power per transmission per relay an-
tenna is exactly Pr , and tj,l = [t

(1)
j,l , t

(2)
j,l ]T with t(i)j,l being the

l-th transmitted signal from the i-th antenna of the Rj node. With-
out loss of generality, we assume that the total power per sym-
bol transmission used in the whole network is fixed to be 1, i.e.,
2NPr + P1 + P2 = 1. Then, these coded two by one signal vec-
tors t

(l)
j are simultaneously transmitted to both the source nodes in

the second 2N consecutive time slots. Hence, the signal received
at source node Tk can be written as

yk =

NX
j=1

“
hk,2j−1t

(1)
j + hk,2jt

(2)
j

”
+ ηk, (4)

where t
(i)
j = [t

(i)
j,1, t

(i)
j,2, · · · , t

(i)
j,2N ]T and ηk =

[ηk,1, ηk,2, · · · , ηk,2N ]T is a 2N by one complex Gaussian
noise vector received at Tk with zero mean and covariance matrix
σ2I2N .

2.2. Universal diversity gain bounds

The first major result of this paper is to establish a universal lower
bound on the diversity gain function for any linear dispersion
coded channel model (4), i.e.,

Theorem 1 Let P (sk → s′k) denote average pair wise error
probability of the ML detector at source node Tk for k = 1, 2.
Then, there exist two constants C1,N and C2,N independent of
SNR, ρ such that

P
`
s1 → s′1

´
≥ C1,Nρ

−2N lnN ρ (5a)

P
`
s2 → s′2

´
≥ C2,Nρ

−2N lnN ρ (5b)

Theorem 1, whose proof is omitted due to space limitation, tells
us that the PEP of the ML detector for any linear dispersion coded
channel model (4) cannot decay faster than lnN ρ/ρ2N as SNR
tends to infinity, which is the best diversity gain function that is
possibly enabled by a distributed linear dispersion code.

2.3. Optimal power loading

Power loading among source nodes and relay nodes significantly
affects the overall performance of the whole relay system [11, 23,
24]. One solution of the optimal power allocation can be obtained
by maximizing the received SNR of the worse link, which is given
in the following theorem.

Theorem 2 The optimal power loading to maximize the average
received SNR of the worst link is determined as follows:

P1 =

√
Ω2

2(
√

Ω1 +
√

Ω2)
, P2 =

√
Ω1

2(
√

Ω1 +
√

Ω2)
, Pr =

1

4N
.

Theorem 2, the proof for which is omitted because of space lim-
itation, reveals that the optimal total power assigned to all relays
is half of the total network power, regardless of the channel vari-
ances.

3. OPTIMAL DISTRIBUTED CONCATENATED STBC

The primary purpose of this section is to design an explicit dis-
tributed STBC for N = 2b to achieve the lower bound of the di-
versity gain provided by Theorem 1.

3.1. Optimal precoding

Let xk = [xk,1, xk,2, · · · , xk,2N ]T , where each entry xk,l for
l = 1, · · · , 2N is the signal generated from a standard quadrature
amplitude modulation (QAM) constellationQ with unit power. At
source node Tk, 2N complex constellation symbols of xk are di-
vided into two groups, i.e., xk,o = [xk,1, xk,3, · · · , xk,2N−1]T

and xk,e = [xk,2, xk,4, · · · , xk,2N ]T , as shown in Fig. 2. To
achieve full diversity, both groups are first precoded individually
by an angle rotation matrix D to be determined later, the inverse
discrete Fourier transform matrix (IDFT) WH

N and the Hadamard
matrix, and then combined into the transmitted signal sk. More
specifically, the whole described processing can be expressed by

sk,o = Pxk,o, (6a)
s∗k,e = P∗x∗k,e, (6b)

where P = 1√
N

Hadamard(N)WH
ND with Hadamard(N) be-

ing an N ×N Hadamard matrix and WN being an N ×N DFT
matrix, i.e., WN (p, q) = 1√

N
e−j2πpq/N , p, q = 1, · · · , N . It

will be shown that to ensure the maximum diversity gain and the
maximum coding gain , the angle rotation matrix should be chosen
to be D = diag(1, ej

π
2N , · · · , ej(N−1) π

2N ). Now, combining (6a)
with (6b) yields

esk = Ediag(P,P∗)EHexk, (7)

where esk = [sk,1, s
∗
k,2, · · · , sk,2N−1, s

∗
k,2N ]T , exk =

[xk,1, x
∗
k,2, · · · , xk,2N−1, x

∗
k,2N ]T , and E is a 2N × 2N elemen-

tary permutation matrix which permutes [xTk,o,x
T
k,e]T into xk, i.e.,

xk = E

„
xk,o
xk,e

«
.
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Fig. 2. Diagram illustration of the signal design at Tk for the proposed distributed concatenated RAC STBC

3.2. Distributed RAC STBC

In the first communication phase having 2N consecutive time
slots, es1 and es2 are transmitted to the relays. Then, the relays
generate the coded signals by using linear dispersion coding and
properly combining the received noisy signals for transmission in
the next consecutive 2N time slots. To clearly describe our coding
scheme, we need to introduce the following two definitions.

Definition 1 A family of 2n × 2n matrices, each called recursive
Alamouti circular matrix (RACM) and denoted by RACMn, is re-
cursively defined by

RACM`+1 =

»
M1 M2

M2 M1

–
,M1,M2 ∈ RACM`

ff
,

for ` = 1, 2, · · · , n− 1, where

RACM1 =

»
a b
−b∗ a∗

–
, a, b ∈ C

ff
,

Definition 2 A 2b × 2b index matrix Lb is recursively defined by

Lt =

»
Lt−1 2t1t−1 + Lt−1

2t1t−1 + Lt−1 Lt−1

–
for t = 1, 2, · · · , b, where L0 = 1 and 1t−1 is a 2t−1 × 2t−1

matrix with each entry being one.

If we let Lb = (Lj,i)N×N , then, our coding scheme is described
as follows: Based on (3), i.e., tj,l =

√
β(Aj,lrj +Bj,lr

∗
j ), where

the coding matrices Aj,l and Bj,l are defined by8>>><>>>:
Aj,2i−1(1, 2Lj,i − 1) = 1

Aj,2i−1(2, 2Lj,i) = 1

Aj,2i(1, 2Lj,i + 1) = 1

Aj,2i(2, 2Lj,i + 2) = 1

,

8>>><>>>:
Bj,2i−1(1, 2Lj,i + 2) = 1

Bj,2i−1(2, 2Lj,i + 1) = −1

Bj,2i(1, 2Lj,i) = −1

Bj,2i(2, 2Lj,i − 1) = 1

and all the remaining elements of A and B are zeros. Correspond-
ing, each codeword matrix at the relay nodes is given by

R =

264R1,1 R1,2 · · · R1,N

R2,1 R2,2 · · · R2,N

· · · · · · · · · · · ·
RN,1 RN,2 · · · RN,N

375 , (8)

where

Rj,i =

"
r

(1)
j,Lj,i

+ r
(2)∗
j,Lj,i+1 r

(1)
j,Lj,i+1 − r

(2)∗
j,Lj,i

r
(2)
j,Lj,i

− r(1)∗
j,Lj,i+1 r

(1)∗
j,Lj,i

+ r
(2)
j,Lj,i+1

#
.

Then, the received signal at the source node Tk is represented by

yk =
p
βRThk + ηk, (9)

where ηk = [ηk,1, ηk,2, · · · , ηk,2N ]T still be a 2N by one com-
plex Gaussian noise vector received at the source node Tk. Here,
it should be pointed out that since the average transmission power
per symbol used at each antenna of the relay nodes is normalized to
be Pr , the amplifier β in (9) must be accordingly chosen in such a
way that β = Pr

2(Ω1P1+Ω2P2+σ2)
≈ Pr

2(Ω1P1+Ω2P2)
. For detection

convenience, equation (9) can be rewritten as

ezk =
p
P3−kβGks3−k + εk, , (10)

where ezk = [zk,1, z
∗
k,2, zk,3, z

∗
k,4, · · · , zk,2N−1, z

∗
k,2N ]T , with

zk denoting the received signal vector at Tk after its self-
interference has been completely eliminated from yk, and Gk

is exactly a 2N × 2N RACM, the first two row of which is
[Hk,1HT3−k,1, Hk,2HT3−k,2, · · · , Hk,NHT3−k,N ]. In addition,

εk =
p
β

2664
PN
j=1Hk,jwj,1PN
j=1Hk,jwj,2

· · ·PN
j=1Hk,jwj,N

3775+

2664
eηk,1eηk,2
· · ·eηk,N

3775 ,
where eηk,j = [ηk,2j−1, η

∗
k,2j ]

T , wj,i = [w
(1)
j,i , w

(2)
j,i ]T =

[n
(1)
j,Lj,i

+ n
(2)∗
j,Lj,i+1, n

(1)∗
j,Lj,i+1 − n

(2)
j,Lj,i

]T and Hk,j =»
hk,2j−1 −hk,2j
h∗k,2j h∗k,2j−1

–
. Substituting sk = Ediag(P,P)EHxk

into (10) yields

ezk =
p
P3−kβGkEdiag(P,P)EHx3−k + εk, (11)

Here, it is noted that the equivalent channel matrix Gk in (11)
is a specific RACM, with each 2 × 2 block sub-matrix being the
product of two Alamouti matrices. It is for this reason that we
call our code as distributed concatenated RAC STBC. For visual
understanding of our code design, we demonstrate three typical
examples below.

Example 1 Consider the two-way relaying network with one
dual-antenna relay. In this case, we have Gk = Hk,1HT3−k,1,
E = I2, and P = 1, thereby, resulting in sk = xk.

Example 2 Consider the two-way relaying network with two
dual-antenna relays. In this case, we have

Gk =

»
Hk,1HT3−k,1 Hk,2HT3−k,2
Hk,2HT3−k,2 Hk,1HT3−k,1

–
.

In addition, P = D = diag(1, ejπ/4) and E is obtained by ex-
changing the second row and the third row of I4. Hence, we have
sk = diag(1, ejπ/4, 1, ejπ/4)xk.
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3.3. PEP analysis

Theorem 3 For any pair of distinct transmitted signal vectors xk
and x′k, the resulting error signal matrix ∆Sk has full column rank
and the following two asymptotic formulae of PEP hold:

P
`
s2 → s′2

´
=

22N−1(4N − 1)!!ρ−2N lnN ρ

(4N)!!N2NP 2N
2 Ω2N

1 Ω2N
2 β2Ndet(∆SH2 ∆S2)

+O

„
lnN−1 ρ

ρ2N

«
,

P
`
s1 → s′1

´
=

22N−1(4N − 1)!!ρ−2N lnN ρ

(4N)!!N2NP 2N
1 Ω2N

1 Ω2N
2 β2Ndet(∆SH1 ∆S1)

+O

„
lnN−1 ρ

ρ2N

«
when SNR is sufficiently large.

The proof of Theorem 3 is omitted due to space limitation. We
would like to make the following observations on Theorem 3.

1. Theorem 3 reveals that the code design presented in this
paper enables the ML detector to achieve the diversity-gain
lower bound given in Theorem 1.

2. It can be also observed that in addition to the optimal
diversity gain function, the asymptotic PEP performance
is dominated by two quantities, min det(∆SH1 ∆S1) and
min det(∆SH2 ∆S2), each of which, following the concept
from the MIMO system, is called coding gain. We can
prove that the code design presented in this paper also en-
ables the optimal coding gain.

4. SIMULATIONS

Throughout the simulations of this section, we assume that both
the source nodes know perfect channel state information and that
the relay nodes only know the first and second order statistics of
the channels. All the bit error rate (BER) curves are shown as a
function of SNR ρ. We carry out computer simulations and ex-
amine error performance by comparing the following half-duplex
two-way relay networks:

(a) The two-way relaying network composed of two source
nodes and 2N relay nodes with each employing a single
antenna [12, 26–28].

(b) The two-way relaying network assisted by N dual-antenna
relays using the code design proposed in Section 3.

Fig. 3 gives the BER comparison of network (a) and network (b)
by using optimal power allocation (OPA) over the symmetric chan-
nels with Ω1 = Ω2 = 1, where the BER curves are obtained by
averaging the BER values at two source nodes. It can be observed
from Figs. 3 that the network (b) outperforms the network (a) in the
whole SNR region, particularly when SNR becomes large, since
the slopes for the network (b) are always better than those of the
network (a). This observation is consistent with our asymptotic
PEP analysis , i.e., the full diversity gain function for the network
(a) is proportional to ρ−2N ln2N ρ, whereas the full diversity gain
function for the network (b) is proportional to ρ−2N lnN ρ when
2N relay antennas are used. Figs. 4 and 5 further illustrate the im-
pact of power allocation on the BER performance of the proposed
network (b) over asymmetric channels, i.e., Ω1 = 1, Ω2 = 3.
Figs. 4 and 5 demonstrate the BER at T2 and T1, respectively. We
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can observe from these two figures that the OPA given by The-
orem 2 indeed enhances the error performance of the whole net-
work, compared with conventional equal power allocation (EPA).
Specifically, at the BER of 10−4, the SNR gains of OPA over EPA
are about 0.3 dB−0.8 dB for T1 → T2 link, and about 1.5 dB−2.5
dB for the reverse T2 → T1 link.
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